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Serial electron crystallography is being developed as an alternative way to

collect diffraction data on beam-sensitive polycrystalline materials. Merging

serial diffraction data from a large number of snapshots is difficult, and the

dynamical nature of electron diffraction prevents the use of existing methods

that rely on precise measurement of kinematical reflection intensities. To

overcome this problem, an alternative method that uses rank aggregation to

combine the rankings of relative reflection intensities from a large number of

snapshots has been developed. The method does not attempt to accurately

model the diffraction intensity, but instead optimizes the most likely ranking of

reflections. As a consequence, the problem of scaling individual snapshots is

avoided entirely, and requirements for the data quality and precision are low.

The method works best when reflections can be fully measured, but the benefit

over measuring partial intensities is small. Since there were no experimental

data available for testing rank-based merging, the validity of the approach was

assessed through a series of simulated serial electron diffraction datasets with

different numbers of frames and varying degrees of errors. Several programs

have been used to show that these rank-merged simulated data are good enough

for ab initio structure determination using several direct methods programs.

1. Introduction

Many industrially and commercially relevant materials, such

as catalysts, pharmaceuticals, minerals and semiconductors,

are synthesized and used in polycrystalline form. The crystals

that are formed are typically not large enough for routine

single-crystal analysis. Nevertheless, owing to the extensive

advances made in structure determination from X-ray powder

diffraction (XRPD) data, the structures of many polycrystal-

line materials can now be determined (David & Shankland,

2008). In cases where XRPD data reach their limit, and data

from a single crystal are required, some researchers have

turned to electron crystallography. Three-dimensional elec-

tron diffraction data are increasingly being used for structure

determination of nanocrystalline materials (Kolb et al., 2011;

Yun et al., 2015). However, such data prove inadequate to

describe a bulk material and can be difficult to collect on

beam-sensitive materials.

Serial crystallography is an emerging technique that may

offer new opportunities for studying polycrystalline materials.

In a serial crystallography experiment, X-ray diffraction

patterns (snapshots) are collected on a large number of

randomly oriented crystals. Each crystal is exposed only once,

and data are collected before radiation damage can occur. By

combining diffraction data from these snapshots, a complete

dataset can be obtained and used for structure determination
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(Boutet et al., 2012). Serial crystallography experiments are

normally performed at centralized facilities, initially at X-ray

free-electron lasers, making use of the ultrafast femtosecond

pulses (Chapman et al., 2011), and later also at synchrotron

facilities with high-brilliance beamlines (Stellato et al., 2014).

To date, nearly all the activity to develop serial crystallography

methods has been in the realm of structural biology (Martin-

Garcia et al., 2016), although recently, there have also been

some studies anticipating serial crystallography in the domain

of materials science (Dejoie et al., 2015; Zhang et al., 2015).

Our research efforts focus on the development of serial

crystallography with electron radiation to characterize the

structures of polycrystalline materials, particularly those that

only form nano-sized crystals and are sensitive to radiation

damage. Transmission electron microscopes offer an inter-

esting alternative for serial crystallography, because (1) elec-

trons diffract much more strongly than X-rays and high-

quality electron diffraction patterns can be obtained from

crystals of a few tens of nanometres in size, (2) crystals can be

observed directly in imaging mode, eliminating the random-

ness typically associated with serial crystallography experi-

ments, so that useful information can be extracted from nearly

every frame, and (3) there is an electron microscope available

in many laboratories. Modern electron microscopes are

computer controlled, such that the entire data collection

process can be fully automated. This enables electron

diffraction data to be collected on a large number of crystals

without human intervention.

A serial electron diffraction dataset contains electron

diffraction patterns collected from crystals in random orien-

tations. The reflections can be indexed following the same

approach developed for serial X-ray diffraction data (Dejoie

et al., 2015) and the intensities extracted. However, scaling and

merging of serial diffraction intensities is in general difficult.

Diffraction intensities are affected by variations in diffraction

volumes, crystal quality, Debye–Waller factors, flux of the

incident beam and reflection partiality. Our first intuition was

to look to the serial crystallography community, who have

devoted great attention to merging snapshot data by model-

ling the diffraction processes that relate the structure factors

to the intensities of the spots observed in the diffraction

pattern (Kabsch, 2014; Ginn et al., 2015; Uervirojnangkoorn et

al., 2015; Sauter, 2015; White et al., 2016). Over the past five

years, several unique ways of merging serial diffraction data

have emerged (Kirian et al., 2010; Kroon-Batenburg et al.,

2015; Zander et al., 2016; Dilanian et al., 2016). These

approaches have been developed with large datasets of

macromolecular structures in mind, and rely on having access

to precise kinematical diffraction intensities. They appear to

be less well suited for the smaller datasets we are targeting and

electron diffraction intensities that are dynamical in nature.

The dynamic effects arise from multiple scattering of elec-

trons, and are strongly dependent on the size of the crystal and

its orientation with respect to the incident beam. This

exacerbates the problem of scaling and merging, because the

structure factors are no longer directly proportional to the

square root of the observed intensities.

Although desirable, it is not necessary to accurately deter-

mine the structure factors for structure determination

purposes. Dynamical electron diffraction intensities obtained

by using the electron diffraction tomography methods have

been used to solve many complex structures (Yun et al., 2015),

and, despite high R values, atomic positions can be determined

well within 0.1 Å accuracy through refinement. The comple-

teness of the electron diffraction data is of greater importance

than the determination of accurate structure factor ampli-

tudes, provided that experimentally strong reflections corre-

spond to those with high structure factor amplitudes (Klein,

2013). This principle has been applied for structure determi-

nation using XRPD data. In EXPO, reflections are ranked as

‘strong’, ‘medium’ or ‘weak’ to partition overlapping reflec-

tions, and all possible combinations are tried iteratively

(Altomare et al., 2003). The idea is that, once the right

combination is found, the structure will be solved in a

straightforward manner. Structure refinement is possible even

without knowledge of the exact intensity values. Eggeman &

Midgley (2012) designed a metric that uses the intensity ranks,

rather than the intensity values (e.g. via R1 or Rwp), as the

objective function during the least-squares minimization.

Their reasoning is that the rank is less affected by dynamic

effects than are the intensities.

Here we describe an alternative approach for merging serial

diffraction data that does not rely on having kinematical

reflection intensities. Our method uses rank aggregation to

optimize the most likely ranking of reflections. Because no

comparisons between frames are made, the problem of scaling

is avoided entirely, and the requirements for the data quality

and precision are greatly reduced. The algorithm is applied to

simulated serial electron diffraction data in order to show its

effectiveness. Errors of different levels are introduced into the

simulated data and the recovered diffraction intensities are

used for structure determination. Important parameters that

affect data quality are discussed.

2. Merging serial electron diffraction data by reflection
ranking

A serial crystallography experiment can be seen as a collection

of approximate rankings, given by the relative intensities of

the observed reflections within a snapshot. The idea is that,

although electron diffraction intensities may be measured off

the Bragg condition and affected by dynamical scattering, the

observed intensity for a strong reflection is likely to be higher

than that of a weak reflection, such that the overall ranking of

the observed reflections is roughly maintained. By viewing it

this way, the merging of reflection data from snapshot frames

taken from crystals with random orientations can be described

as a ranking problem.

Ranking, or rank aggregation, is one of the classic problems

in computer science and concerns the problem of recon-

structing a ranking between items by combining different

sources of information. A particularly well known example is

the PageRank algorithm used by Google to rank web pages

(Page et al., 1999). Our method for merging snapshot data,
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which we call SerialMerge, is based on the SerialRank algo-

rithm (Fogel et al., 2014), which applies a seriation algorithm

for ranking a set of n items given pairwise comparisons

between these items (i.e. if A > B and B > C then A > B > C).

This sets it apart from conventional algorithms that achieve

the same by deriving a score for each item. In the context of

merging diffraction data, the merged intensity value could be

seen as the crystallographic equivalent of the score in a

ranking problem. For serial snapshot data, this means that the

intensity value for a reflection has to be compared across

many frames and that all factors affecting the scale must be

taken into consideration. By considering only the pairwise

comparisons between reflections, the intensity values need to

be consistent only within one frame. In this way, any variations

from frame to frame can be ignored. The SerialRank algo-

rithm is simple, but robust for merging reflection intensities,

and can recover the ranking of reflections even when some

intensities are corrupted or missing, provided that the source

of errors is random.

2.1. Ranking algorithm

The description of the algorithm here is adapted from the

work of Fogel et al. (2014), and the terminology is for

diffraction experiments. We first consider the simple case

where only the reflections in a single diffraction snapshot are

compared, and then we expand this to the general case when

any number of snapshots are merged. For a single snapshot,

start with a list of n reflections (h1, h2, h3, . . . , hn), with

intensity (I1, I2, I3, . . . , In). If the snapshot contains symmetry-

equivalent reflections, their intensities are merged and the

mean intensity is used. C is an n� n matrix of pairwise

comparisons between the n individual elements, in this case

reflections. Elements of C are defined as

Ci;j ¼

1 if Ii > Ij

0 if Ii ¼ Ij

�1 if Ii < Ij

8<
: ð1Þ

for every value of i 6¼ j, where 0< i, j � n. C is antisymmetric,

so that Ci;j þ Cj;i ¼ 0, and all elements on the diagonal

Ci;i ¼ 1.

As suggested by Fogel et al. (2014), this model can be

directly extended to the setting where multiple comparisons

are available for each pair, so that Ci;j becomes a fractional

value. Thus, for the general case with a large number of

snapshots, we redefine n to be the total number of unique

(symmetry-equivalent) reflections observed over all snap-

shots, giving a list of reflections (h1, h2, h3, . . . , hn). Then, let

each element of C, Ci;j be the difference between the number

of occurrences of Ii > Ij and Ii < Ij, normalized to the number

of times this comparison is made, so that �1 � Ci;j � 1, i.e.

Ci;j ¼
1

m

Pm
k¼1

½Ik;i > Ik;j� �
Pm
k¼1

½Ik;i < Ik;j�

� �
; ð2Þ

where m corresponds to the total number of pairwise

comparisons between hi and hj (with intensities Ii and Ij) that

occur over all snapshots. The similarity matrix S is formally

defined as

Si;j ¼
Xn

k¼1

1þ Ci;kCj;k

2

� �
; ð3Þ

which is essentially the dot product of C with its transpose:

S ¼ 1
2 n11T

þ CCT
� �

: ð4Þ

We compute the Laplacian matrix of S:

LS ¼ diag S1ð Þ � S: ð5Þ

The ranking is then given by the smallest eigenvector of LS

with a nonzero eigenvalue, the so-called Fiedler vector of S.

The retrieved ranking is used to sort the reflection list. Fig. 1

shows an example of S before and after applying the retrieved

ranking to simulated snapshot data of a zeolite, SSZ-55.

The SerialRank algorithm has the property that the reverse

order is also a solution. We assume that the observed dataset,

if merged by taking the mean of all individual intensities

observed for each symmetry-equivalent reflection, gives an

indication of the general trend. We calculate the Kendall rank

correlation coefficient (�) between the ranking from the

SerialRank algorithm and that from taking the mean. The

Kendall coefficient counts the number of agreeing pairs minus

the number of disagreeing pairs normalized to the total

number of pairs, so that it takes a value between �1 and 1. A

value of 1 indicates identical ordering between two datasets, 0

indicates no correlation and �1 that the order is reversed.

Therefore, if � < 0, we simply reverse the order of the

retrieved ranking. As the Kendall coefficient is a measure of

rank correlation that can be used to determine the similarity

of the rankings between different datasets, we will also use it

to evaluate the quality of the obtained ranking.

2.2. Assigning intensities to reflections

The intensity information is lost when applying the Serial-

Merge algorithm. To be able to use the data in structure

determination programs, we should assign intensity values to
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Figure 1
Similarity matrix S (a) before and (b) after applying the retrieved ranking
using the SerialMerge algorithm. The x and y axes correspond to the 437
observed reflections for SSZ-55 (Nframes = 1000, Nupsets = 0.0, full
intensities, see x2.4). The colour brightness of each element corresponds
to the similarity between two reflections.



the reflections. We have already established that simply being

able to classify reflections as strong, medium or weak is

sufficient for structure determination. Here we apply a

merging strategy that simply takes the mean of all individual

intensities observed for each symmetry-equivalent reflection

over all snapshots. The intensity values are then sorted in

descending order and mapped to the ranked list of reflections

output by the SerialMerge algorithm. Alternatively, a histo-

gram of intensities from a similar crystal structure or a powder

pattern could be used as a source of intensities.

2.3. Implementation

We implemented our algorithm in Python 2.7, making use of

the numpy (1.11.3) (http://www.numpy.org/) and pandas

(0.19.2) (http://pandas.pydata.org/) libraries. The algorithm

itself spans 25 lines of code and is based on the code provided

by Fogel et al. (2014). The Python implementation consists of

two steps, (1) to construct the C matrix, which scales linearly

with the number of frames provided, and (2) the ranking

algorithm, which scales exponentially with the number of

unique reflections (i.e. the size of the C matrix). This means

that the algorithm is efficient with any number of frames up to

around 10 000 unique reflections, and takes seconds to run on

an Intel Core i7-6700K @ 4.00 GHz (Fig. S1). With larger

datasets, the size of the full S matrix becomes large enough

that the eigenvalue decomposition of its Laplacian becomes

inefficient. Fogel et al. (2014) noted that with larger datasets it

is still possible to use SerialRank by storing the C matrix in

sparse format, skipping the calculation of S and LS as they will

not be sparse, and passing the eigenvalue solver a function

that directly computes the Laplacian of S.

2.4. Performance evaluation using simulated data

We initially attempted to apply the algorithm to individual

frames of a rotation electron diffraction (RED; Wan et al.,

2013) dataset, which was collected from a single crystal by

rotating it in the electron beam around an arbitrary axis. The

algorithm was unable to retrieve an accurate ranking, mainly

because of the high correlation between individual frames.

The RED frames share a common rotation axis and therefore

the total number of unique pairwise comparisons between the

reflections is small. For example, if two reflections occur in one

frame, the chance is high that both also occur in the next and/

or previous frames, adding redundancy instead of new infor-

mation. The result is a very sparse comparison matrix C, where

each observed pairwise comparison has been measured rela-

tively frequently. The SerialMerge algorithm requires the

opposite: the denser the comparison matrix, the better. This

can only be achieved by collecting data from as many

randomly oriented crystals as possible, to maximize the

number of unique observed pairwise comparisons. Our work

on the development of methods for automated data collection

of electron diffraction snapshots from randomly oriented

crystals is currently ongoing and we do not yet have access to

experimental data. Here we perform our tests using simulated

data instead. For this purpose, published structure models of

six high-silica zeolites covering a range of complexities and

symmetries were used (Table 1).

Simulated data represent the perfect scenario where the

random orientations are equally distributed in reciprocal

space. In practice, crystals typically tend to have a preferred

orientation. This is a common problem in electron microscopy

that can be dealt with experimentally, for example, by

including a small rotation of the beam or sample stage, or

through sample preparation by using ultramicrotomy. With

these measures taken, there could still be a missing cone in the

data. However, it should be noted that, as long as the data are

somewhat randomly sampled around the preferred orienta-

tion, the quality of the merging is not affected. Only the

completeness of the data will be lower. Rotation data

collected on single crystals, particularly those with low

symmetries, often have a missing wedge, and this is rarely

detrimental for structure determination.

The theoretical intensities were calculated using the

program CrystDiff, developed in our laboratory to simulate

electron diffraction patterns from a crystal with arbitrary

orientation. The program calculates the structure factor, as

well as the kinematical intensity of each observed diffraction

spot, taking into account the excitation error (deviation from

the Bragg condition). This allows us to test the effect of having

both fully and partially observed reflection intensities.

Experimentally, reflections are rarely in exact Bragg condi-

tions when the data are collected with a still electron beam and

crystal. If it is desirable, fully observed reflections can be

obtained by precessing the electron beam (Vincent & Midgley,

1994). For each crystal structure, we generated the reflection

intensities for 10 000 randomly oriented snapshots up to 1 Å

resolution.

Several parameters that may affect data quality were

examined, including the following:

(1) The effect of scaling, for example, because of variations

in the diffraction volumes and the flux of the incident beam.

For each snapshot, the reflection intensities were multiplied by

a random number between 1 and 50.

(2) The effect of having fully or partially observed reflection

intensities.

(3) The effect of the number of frames, Nframes, used for

merging. Each dataset consists of 100 to 1000 frames selected

randomly from the 10 000 snapshots.

(4) The effect of inaccuracies and errors in the data, such as

dynamic effects, and other systematic or non-systematic

factors influencing the intensities. This is achieved by
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Table 1
Published cell parameters of the six zeolite structures (Smeets et al., 2014,
2016).

Sample
Space
group a (Å) b (Å) c (Å) � (�) � (�) � (�) V (Å3) Natoms

SSZ-45 Fmmm 13.719 35.224 22.136 10696.96 28
SSZ-53 C2=c 4.9980 33.7801 21.0997 90.77 3561.98 25
SSZ-55 C2221 12.9212 21.2154 5.0912 1395.65 11
SSZ-56 P21=m 13.9387 19.9122 12.3285 106.70 3277.51 45
SSZ-58 Pmma 25.1484 12.5186 12.8678 4051.08 38
SSZ-59 P�11 5.0033 12.6831 14.7108 103.29 90.85 100.63 891.30 24



introducing upsets to the simulated reflection intensities,

where for every set of reflection intensities, a certain percen-

tage of the reflections were randomly sampled and their

intensities shuffled around. The primary goal here is to

perturb the ranking of the reflections within each set. The

number of upsets is denoted by Nupsets, chosen from 0.0 to 0.8,

where Nupsets = 0.8 means 80% of the reflection intensities are

shuffled around.

The parameters chosen for generating the test datasets are

summarized in Table 2. All combinations of the parameters

were generated using a Python script, and the data were fed

into the SerialMerge algorithm. The output of the SerialMerge

algorithm is a set of reflection indices, ranked in descending

order from strong to weak.

3. Results and discussion

3.1. Quality of the obtained ranking

We evaluate the quality of the rank obtained using the

SerialRank algorithm by calculating its Kendall correlation

coefficient (�) with the true rank. We find that for all test cases

the retrieved ranking after merging shows significant corre-

lation with the true ranking. Both increasing the number of

frames and reducing the number of upsets improve the

correlation. This is highlighted in Fig. 2, which shows the trend

in the Kendall coefficients between the true ranking and the

retrieved ranking for SSZ-45 when varying Nupsets and Nframes

used for merging. Similar trends are observed for the other

tests, as shown in Tables S1 and S2, although the exact

numbers vary from case to case. The highest correlations are

found with Nupsets = 0 and Nframes = 1000 (the maximum

number of frames included in the tests). In terms of the quality

of the retrieved ranking, merging 100 frames with Nupsets = 0 is

roughly equal to merging 1000 frames with Nupsets = 0.6. This is

illustrated in Fig. 3(a), starting with 200 frames and 40%

upsets. The ranking can be improved by a similar degree either

by increasing the number of frames to 1000 (Fig. 3b) or by

reducing the number of upsets to 10% (Fig. 3c). This indicates

that by simply collecting more diffraction patterns the effect of
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Table 2
Parameters for generating the different test datasets.†.

Scaling Random (1–50)
Intensities Partial, full
Nframes 100, 200, 500, 1000
Nupsets (%) 0, 10, 20, 30, 40, 50, 60, 80

† Nframes is the number of random snapshot frames used for merging. Nupsets is the
percentage of the reflections randomly selected and their intensities shuffled.

Figure 2
Kendall correlation coefficients showing the correlation between the
reflection rank from merging simulated data for SSZ-45, with (a) partial
and (b) full intensities, and the true rank generated from the structural
model. Each value of Kendall � corresponds to an average of 10 runs and
the spread of the values is shown as error bars.

Figure 3
Reflection ranks from the simulated data for SSZ-45 using partial
intensities, varying Nframes (200, 1000) and Nupsets (0.1, 0.4), plotted
against the true rank generated from the structural model. The
corresponding Kendall coefficients are (a) 0.56, (b) 0.77, (c) 0.70 and
(d) 0.85.



bad data can be compensated considerably. Naturally, the best

correlation is found when a large number of frames with a low

degree of error are merged (Fig. 3d).

The number of frames used for merging essentially acts as

an upper limit for the accuracy of the retrieved ranking that

can be achieved. Stronger Kendall correlations are found

when merging fully measured intensities, although the

advantage over using partial intensities is relatively small. The

effect of using full intensities is particularly noticeable when

merging 100 or 200 frames, but becomes less significant when

merging 500 or 1000 frames.

The merging statistics for SSZ-45 (Table 3) show that data

collected on 100 randomly oriented crystals are already

sufficient to create a dataset with 95% completeness.

Increasing the number of frames to 1000 results in only a

marginal increase of the completeness, but it increases the

density of the C matrix from 17.4 to 68.9% and the redun-

dancy of each observed reflection pair from 1.3 to 2.7. This

substantially improves the data for merging. For five out of the

six test structures, 1000 frames are enough to obtain a density

of the C matrix of over 65%. Only for SSZ-59, with P�11 space-

group symmetry, does the density of the C matrix not exceed

31.7% (Table S3). This is reflected in its Kendall coefficients

(Tables S1 and S2), which are lower than those for the other

test structures.

3.2. Structure determination using obtained intensities

We focus here on the data merged using partial intensities,

because these better reflect the real case scenario. Fig. 4 shows

the effects of the number of frames and upsets on the reflec-

tion intensities by comparing the merged data with the

simulated data for SSZ-45. Despite the rudimentary estima-

tion of reflection intensities, the bulk of the reflections are

reasonably well represented. Large differences in the absolute

values of the intensities occur mostly in the strong reflections.

As with the ranking, the accuracy of the merged intensities can

be improved to a similar degree by increasing the number of

frames (Figs. 4a and 4b) and reducing the number of errors

(Figs. 4a and 4c) in the data.

We were interested to see how these data would fare in

practice. For our initial tests, we used the zeolite-specific

program FOCUS (Grosse-Kunstleve et al., 1997; Smeets et al.,

2013). The major advantage of using FOCUS is that it includes

a built-in framework search, which enables it to classify and

group solutions with the same crystal structure. This makes it

ideally suited to run and evaluate the quality of a large

number of datasets automatically. The success rate of finding

the solution (the number of correct solutions found in a fixed

number of runs) can be used as an indicator of the data quality.

The specific details of the structure solution tests using

FOCUS can be found in Table S4.

We found that FOCUS is able to deal with the merged data

very well. In nearly all cases where Nupsets � 0.4, FOCUS was

able to retrieve the correct framework structure. In general,

the higher the frame number and the lower the upsets, the

higher the chance that FOCUS finds the solution. Only a few

of the datasets (SSZ-59, SSZ-56) failed to produce a structure

when a low number of frames were used (100, 200). In both

cases, increasing the number of frames resolved this.

FOCUS relies on a priori information about zeolites to

supplement the diffraction data, and, while useful for testing,

does not represent the general use case. Therefore, a second

round of tests was performed using the generally applicable

structure solution programs SHELXS (Sheldrick, 2008),

SHELXT (Sheldrick, 2015), SIR2014 (Burla et al., 2015) and

the charge-flipping algorithm (olex.solve) implemented in

OLEX2 (Dolomanov et al., 2009). On the basis of the results

above, we choose the datasets for all six structures with 500

frames, partial intensities and Nupsets = 0.3. Table 4 shows how

the algorithms compare for these data. Default parameters

were used where possible. Structure determination was

considered successful only if the complete structure (>90% of

the atoms located) could be recovered from the electrostatic

potential map.

research papers

890 Smeets and Wan � Serial electron crystallography: merging data by rank aggregation J. Appl. Cryst. (2017). 50, 885–892

Table 3
Merging statistics for SSZ-45.†.

Reflections C matrix

Nframes Observed Unique
Complete-
ness (%)‡ Redundancy

Density
(%) Redundancy

100 6548 1434 94.8 4.6 17.4 1.2
200 13039 1493 98.6 8.7 27.7 1.4
500 32629 1510 99.8 21.6 49.5 1.9
1000 65278 1513 100.0 43.2 68.9 2.7

† For our tests, the merging statistics depend exclusively on the choice of Nframes . The
numbers are representative of the values and trends one can expect. ‡ Up to a
resolution of 1 Å.

Figure 4
Merged intensities from the simulated data for SSZ-45 using partial
intensities, varying Nframes (200, 1000) and Nupsets (0.1, 0.4), plotted
against the theoretical values generated from the structural model.



For all tests, at least one of the programs was able to

produce a fully interpretable structure solution. The charge-

flipping algorithm and SHELXS tended to give the cleanest

solutions. SIR2014 and SHELXT produced somewhat messier

solutions, often misassigning Si and O atoms and containing

spurious Q peaks. We found SHELXT to be the most effective

with our data. That said, in SHELXT the structure is deter-

mined in P1, and only in the final step is the most likely space

group decided and applied. With our merged data, we found

the algorithm to be too assertive in changing the space group,

resulting in messy or incorrect solutions for SSZ-45, SSZ-56

and SSZ-59. In these cases, a clean solution could only be

obtained by forcing the correct space group via the ‘-s’ flag.

The algorithm in SIR2014, on the other hand, had no issues

finding the correct structure in these three cases. Of the six

structures, SSZ-55 proved to be the most difficult to solve.

Only FOCUS and SHELXT were able to retrieve its structure

reliably. The noncentrosymmetric space group of SSZ-55 was

likely to have complicated the structure determination

process. By reducing Nupsets to 0.2 it became possible to solve

the structure using olex.solve, and by further reducing it to 0.1

with SHELXS.

4. Conclusion

We have shown that ranking can be used as an effective

method for merging snapshot serial electron diffraction data.

The potential for using rank aggregation for merging stems

from the fact that no comparisons between frames are made

and data only need to be consistent within one frame. The

scaling problem common to other serial data merging algo-

rithms is thus avoided entirely. Instead of modelling the

diffraction processes that relate the structure factors to the

intensities of the spots observed in the diffraction pattern, our

method retrieves the most likely reflection ranking. As a

result, it is tolerant to errors in the diffraction intensities,

which are inevitable in electron diffraction because of dyna-

mical scattering. Diffraction intensities are mapped to the

reflection ranking to construct a dataset that can be used for

ab initio determination of complex zeolite structures. It has

been shown that in general the quality of the merged inten-

sities improves as the number of frames increases and the

errors in the reflection intensities decrease. Measuring full

intensities, for example by using precession electron diffrac-

tion, leads to a small advantage for datasets consisting of a

small number of frames compared to measuring partial ones,

but the difference is insignificant for datasets with a large

number of frames. It is worth noting that, although we

developed our ranking algorithm with serial electron diffrac-

tion in mind, it is generally applicable and has the potential to

be applied to any problem that involves merging serial snap-

shot data.

The Python implementation of the algorithm, the simulated

data used and the simulation software CrystDiff have been

provided in the supporting information and are also freely

available from the link http://github.com/stefsmeets/

serialmerge.
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