arXiv:2402.09395v1 [physics.optics] 14 Feb 2024

Non-utopian optical properties computed of a
tomographically reconstructed real photonic
band gap crystal

LARS J. CORBIJN VAN WILLENSWAARD'2, STEF SMEETS®, NICOLAS
RENAUD®, MATTHIAS SCHLOTTBOM?2, JAAP J.W. VAN DER VEGT?,
WILLEM L. Vos’

I Complex Photonic Systems (COPS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box
217, 7500AE Enschede, The Netherlands

2 Mathematics of Computational Science (MACS), MESA+ Institute for Nanotechnology, University of
Twente, P.O. Box 217, 7500AE Enschede, The Netherlands,

_3 Netherlands eScience Center, Science Park 402, 1098 XH Amsterdam, The Netherlands
“w.Lvos@utwente.nl
https://nano-cops.com

Abstract: State-of-the-art computational methods combined with common idealized structural
models provide an incomplete understanding of experimental observations on real nanostructures,
since manufacturing introduces unavoidable deviations from the design. We propose to close
this knowledge gap by using the real structure of a manufactured crystal as input in computations
to obtain a realistic comparison with measurements on the same nanostructure. We demonstrate
this approach on the structure of a real inverse woodpile photonic bandgap crystal made from
silicon, as previously obtained by synchrotron X-ray imaging. A 2D part of the dataset is
selected and processed into a computational mesh suitable for a Discontinuous Galerkin Finite
Element Method (DGFEM) to compute broadband optical transmission. We compare this to
the transmission of a utopian crystal: a hypothetical model crystal with the same filling fraction
where all pores are taken to be identical and circular. The shapes of the nanopores in the real
crystal differ in a complex way from utopian pores due to scallops, tapering, or roughness. Hence,
the transmission spectrum is complex with significant frequency speckle both outside and inside
the main gap. The utopian model provides only limited understanding of the spectrum: while it
accurately predicts low frequency finite-size fringes and the lower band edge, the upper band
edge is off, it completely misses the presence of speckle, the domination of speckle above the
gap, and possible Anderson localized states in the gap. Moreover, unlike experiments where one
can only probe from the outside of a real crystal, the use of a numerical method allows us to
study all fields everywhere. While at low frequencies the effect of the pore shapes is minimal
on the fields, major differences occur at higher frequencies including the gap such as high-field
states localized deep inside the real crystal. We conclude that using only external measurements
and utopian models may give an erroneous picture of the fields and the local density of states
(LDOS) inside a real crystal, while this is remedied by our new approach.

1. Introduction

The field of nanophotonics promises control over emission and propagation of light by tailoring
the environment [1-3]. Photonic crystals are a particularly promising tool for the goal of
simultaneous control of light in all three dimensions (3D). Such photonic crystals are defined by a
periodic variation of the refractive index commensurate with optical wavelengths, which results in
photonic dispersion relations organized in bands, analogous to the electron bands in solids [4,5].
Analogous to the electronic band gap, there is a complete 3D photonic band gap, a frequency gap
without any bands. Within the 3D band gap, no light modes exist inside the crystal, hence the
density of states (DOS) strictly vanishes. In finite crystals, the local density of states does not



vanish completely, but by making the crystal large enough it can be suppressed to arbitrarily low
levels [6-8]. A 3D gap is therefore a powerful tool to radically control the spontaneous emission
and cavity quantum electrodynamics (QED) of embedded quantum emitters [9, 10]. There is a
wide range of applications of 3D photonic band gap crystals, including efficient photovoltaic
cells [11, 12], miniature lasers [13], thermal emission control [14, 15], mode and polarization
converters [16], cloaking devices [17], and 3D photonic integrated circuits [18, 19].

Inevitably, every fabricated 3D photonic crystal will, like any nanostructure, deviate from its
design, both systematically in the form of structural deformations and statistically in shape and
size variations. Consequently, the optical properties of actual samples differ from those of the
design [20-22]. Testing the optical properties of a real sample, for example by measuring a
stopband in reflection, typically shows a complex signal that differs markedly from theoretical
predictions [23]. These differences could not only be caused by the manufacturing deviations,
but also by the experiment or the model that was used to predict the optical properties in the first
place. To guide design, experiment, and modeling of nanophotonic devices, it is thus crucial
to understand how real devices with manufacturing deviations differ from the perfect devices
that could only be manufactured in a utopian cleanroom. Here we propose and demonstrate a
completely new approach to nanophotonics to bridge the gap between model and experiment.

2. Interpreting experiments with models
2.1. Traditional approach

To put our new approach in perspective, let us first discuss the limitations of the current traditional
approach to nanophotonics. As with most physics research the traditional approach consists of
two tracks: experiments and theory. The central idea is that if we can explain a set of experiments
with a theory then we understand what is happening. In reality, this is quite difficult with large
nanophotonic devices, because there are significant complications and limitations on both the
experimental and the theoretical tracks.

To understand the limitations of the traditional approach, illustrated in Figure 1a, we consider
that we have a design for a large nanophotonic device, e.g., a 3D photonic band gap crystal,
whose physical properties we seek to understand. The experimental route consists of two steps:
The design is used to manufacture a number of samples, a beam with photonic crystals in our
case. Each sample is then mounted into an experimental setup so that its optical properties are
measured, for example, the reflectivity as function of frequency [23,24]. The theoretical route
consists of putting a model of the design into a computer for a computation using a numerical
method like a Finite Element Method (FEM) [25], Plane Wave Expansion (PWE) [26], or Finite
Difference Time Domain (FDTD) [27]. Which optical properties can be computed in this way
depends on the model, but in theory they are expected to match the experimental results. In
practice this is much more difficult, and with a complicated system like a photonic crystal one is
happy with a limited match between theory and experiment, for example, the center frequency of
a measured reflectivity peak at is the center of a theoretically predicted bandgap [28,29].

The source of these complications is in all three steps, (1) computation, (2) experiment and (3)
manufacturing. We discuss the complications introduced by each of these steps individually.

(1) Computationally the challenges in essence revolve around the finite computer memory
and computation time. A realistic simulation of the experimental situation is beyond the
ability of current (super)computers for anything but the tiniest photonic crystals. Therefore,
the computational approach has to make modelling assumptions and simplifications. Typical
examples are simplifying an incident beam from focus to plane wave, using an infinite rather
than finite crystal, or using only simple geometric shapes rather than a freeform structure. These
assumptions affect the computed optical properties and thus limit and complicate a comparison
with experiment. An extreme example of this is the use of an infinite crystal and the computation
of a band structure. The lack of any external interface and finite size effects means that such a
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Figure 1. Schematics of the traditional approach to nanophotonics research and our
new data-driven approach. (a) The traditional approach compares numerical results
based on an idealized model of the design sample with experimental results of a real
manufactured sample. Each conceptual step (blue) is illustrated with an example
(black). Both the real sample and numerical models differ from the original design,
the former due to fabrication, the latter due to modeling assumptions (red arrows).
These differences fundamentally limit the comparison between the numerical and
experimental results. (b) The data-driven approach using the real structure as input for
a simulation can mediate between the experimental and model results.

band structure is limited in what it can predict and explain about experiments.

(2) Challenges with the experiment are primarily practical, i.e., we need to get a reliable signal
for the optical property that we want to measure. The extent and design of photonic crystals
means that we are limited in what kind of signals we can obtain, as we can not “just stick a probe
in there”, especially not in 3D nanostructures [30]. Even if we could, this probe would probably
affect the optical properties under study. Moreover, not all effects give a significant signal, for
example, measuring the effect of a bandgap through transmission is hard because the prediction
is that there should be a vanishing transmission, but a vanishing signal could also be caused by a
myriad of other reasons, and such a signal is thus potentially unobservable due to noise.

(3) The central challenge with manufacturing is that it will inevitably introduce deviations from
the original design, thereby altering the optical properties [22,31,32]. The current techniques
for manufacturing photonic crystals will leave artifacts, and these artifacts are large enough that
they significantly impact device performance, as will be shown in our results. These artifacts



can roughly be grouped into two categories, systematic and random. A systematic deviation
is one where the whole crystal deviates from the design in a predictable manner, for example,
the misalignment of two parts of the design [20,33]. With random deviations the actual crystal
deviates from the design in a way that can only be characterized statistically, for example, if the
shape of each feature is deformed in a different way.

The current traditional approach to estimate and understand the effects of manufacturing
deviations is to use computational and theoretical models. This is very useful for systematic
manufacturing deviations, as one can typically model these with one or a few parameters, like an
offset parameter to model a misalignment. Studying the effect of such a parameter is the same
as optimizing any other design parameter like lattice constants and feature sizes [33]. There
are three problems with this approach for predicting the effect of more random manufacturing
deviations. Firstly, one needs to have a parameterized model to generate such deviations. But
deviations like shape variations are very difficult to realistically model with a tractable number of
parameters. Secondly, the randomness means that one needs a realistic probability distribution for
the generation of these deviations, but there is typically no information about these distributions
in a real crystal with a few rare exceptions [34]. Thirdly, the randomness means that the
optical properties are only valid for one specific generated realization, which is not necessarily
realistic [20]. One could work around this by using ensemble averaged properties [35]. However,
such statistical quantities only give information about an ensemble of samples and are therefore
unsuitable to explain what happens in a single sample with a specific configuration [22,36].

2.2. Qur data-driven approach

Our new data-driven approach tackles the problem of the unrealistic utopian structure used in the
computations, as illustrated in Figure 1b. We do this by extracting the crystal structure from a
tomography reconstruction of a real crystal, thereby including all manufacturing details. This
structure is then used for a computation of the optical properties of the photonic crystal. We
envision two ways how our new approach can complement the current approaches.

(1) The comparison between measurements from a real crystal with the computation is based
on the structure of the same crystal. By using the real structure of the crystal one includes the
exact manufacturing deviations from the utopian design, just as in the experiment. The effect
of these deviations should therefore be the same in both experiment and computation thereby
obviating many assumptions, giving a more accurate comparison. Moreover, as we can study the
field inside a crystal with a computation, we can effectively investigate effects that are difficult or
even impossible to probe in an experiment.

(2) The comparison between computations with real structure and computations with related
model geometries can be used to determine how accurate the model is as predictor for a real
nanostructure. Optical properties that are both present in the model and the real-structure
computation are likely relatively robust with respect to manufacturing deviations and thus also
present in a real nanostructure. Properties of the model that are absent in the real-structure
computation are likely sensitive to manufacturing deviations and thus not present in the real
nanostructure.

The use of the structure of a real nanostructure in our approach is what makes these applications
possible and what makes it fundamentally different from previous approaches with modeled
manufacturing deviations. These previous modeled manufacturing deviations are limited by
human imagination, which includes parametrizing them and finding a proper distribution for
the randomness. The use of the structure of a real sample bypasses these problems as it uses
the actual physical process to generate a real computational version of manufacturing deviations
according to the actual statistical distribution. Moreover, because the reconstruction is of a
real nanostructure, we are not limited to ensemble avaraged quantities, as the actual computed
properties are relevant for that specific sample, and in terms of statistical physics: on that specific



configuration [36].

3. Methods
3.1. Design and dataset

The unit cell design for the inverse woodpile photonic crystal structure is shown in Figure 2a—
¢ [37]. The crystal structure consists of intersecting pores with radius r along the X and Z
direction. The pores in the X and Z directions form a centered rectangular lattice in the YZ and
XY planes, respectively. This crystal has lattice parameters a and ¢, with ¢ = a/V?2, such that the
crystal has a face centred cubic (fcc) lattice, with a diamond like symmetry [37,38].

In practice, real 3D photonic bandgap crystals are manufactured from silicon on the edge of
a beam using methods described in Refs. [39—41]. In brief, a mask with an array of apertures
is made on both the top and front sides of the beam, followed by two consecutive reactive ion
etching steps to etch nanopores both from the top and the side of the Si beam. The volume where
the two pore sets overlap is a 3D periodic nanostructure with the inverse woodpile structure.

A number of these crystals were non-destructively imaged using X-ray imaging (holotomog-
raphy) [29, 40, 42—44]. Tomographic reconstruction was used to obtain the electron density
inside the scanned volume. The resulting datasets are divided in cubic voxels, with each voxel
associated with the electron density in its volume. We note that obtaining quantitative electron
densities is a major step forward over the arbitrary units typical of scanning electron microscopy
(SEM). From all datasets we choose the one with the smallest voxels and the largest contrast in
electron density, expecting this will give the most accurate reconstruction. This specific dataset
has 1024 x 2048 x 1024 cubic voxels with 10 nm edges. The axes of this dataset are aligned to
be parallel to the top and side plane of the beam with crystals. Moreover, since the pores extend
perpendicular from the surface of the beam, this alignment results in pores that are also aligned
with the dataset axes.

Figure 2d shows part of the dataset with size 800 x 1108 x 800 voxels that corresponds to 33%
of the whole dataset. It highlights a single crystal on the silicon beam. The variations on the
three image planes correspond to the intersection with the crystal pores. Periodic variations are
apparent from intersections with the 2D lattices of pores. The lengthwise cross-section is visible
on the XZ plane, which also shows that the pores in the Z direction are less than a third of the
length and thinner than those in the X direction.

Figure 2e shows a complete slice of the dataset in the Y Z-plane at the edge of the silicon beam,
approximately 4000 nm below the top surface. Three photonic crystals are visible, a complete
one in the middle and two partial ones on the left and right. The transition between dark area at
the bottom (vacuum) and lighter area is the front surface of the silicon beam.

The lattice of circular dark areas correspond to the intersection of this slice with the pores
in the X-direction. The periodic lighter pores in the middle and right crystal are pores with a
reduced size in the design thereby creating a lattice of defects. The pores in the —Z-direction are
short and thin and as result barely visible.

From this slice we estimate that the deepest pores in the —Z-direction are approximately 4
lattice constants deep, corresponding to approximately 1900 nm. Thus there are only pores in
both the X and —Z-directions in the volume near the XY-surface. The crystal volume that is
deeper only has pores in the X-direction, thus forming a quasi-2D structure, see also Ref. [40].

3.2. Data processing

Numerical computations on the total dataset volume with all 2 x 10° voxels are at this time not
feasible as they require prohibitively large computational resources. As a result it would, if at
all possible, put such severe restrictions on spatial and frequency resolution that a comparison
to experiment would not be meaningful. Therefore, for this study we limit ourselves to a part



Figure 2. (a,b,c) Schematic of the inverse woodpile unit cell, used as a basis for the
design of the fabricated nanostructures. (d) Bird’s-eye view of the X-ray holotomography
dataset cut out to highlight a single crystal. (e) YZ-slice of the X-ray holotomography
dataset (size 1024 x 2048 voxels), lighter regions have a higher electron density. This
slice intersects the birds-eye view (d) at the dashed plane.

of the 2D-slice of Figure 2e. The reason for choosing a part of a 2D-slice is that this reduces
computational cost and allows high-resolution computations to accurately compute the field
around the irregular pore shapes. While the 2D slice is not directly comparable to experiment,
it does contain real manufacturing deviations and is thus interesting for quantifying the optical
effects these manufacturing deviations have. The selected part is shown in Figure 3a, which
is the largest region in the dataset that is in the 2D part of a crystal with uniform pores in the
design. The edge of the region is chosen to cut through the middle of pores to allow mirroring
the domain along the edges. After this mirroring the pores on the edge of the domain have nearly
the same size as the pores that are completely inside the domain.

The processing of the dataset to a mesh for a finite element computation consists of three steps:
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Figure 3. Processing of the X-ray holotomography dataset to numerical input. (a) A
small part of the electron-density dataset, light regions correspond to silicon, dark ones
to air. The rectangular region outlined in red (size 6.19 pm X 1.37 pm) is selected for
further processing. (b) A Gaussian filter is applied to reduce the high frequency noise
in the electron-density, the result is segmented using local thresholding. The red lines
are the border between the silicon matrix and the pores. The scale bar is 500 nm. (c)
A mesh is generated for the whole region, with the segmentation border as constraint.
The color of the elements corresponds to the material with in grey silicon, and in red
the pores. Pores intersecting with the left and right boundaries have been removed.

Cutting out the region, extracting the pore-silicon interface, and meshing. These three steps are
automated using Nanomesh [45], an open source Python library for processing 2D and 3D data
into computational meshes. The code for all these steps and the actual computation are available
as part of the dataset in Ref. [46]

The slice in Figure 3a and the dataset in general shows high frequency noise and line artifacts.
To reduce these artifacts the images are smoothed using a Gaussian filter with a standard deviation
o = 30nm corresponding to 3 pixels. This agrees well with the 2.5 pixels spatial accuracy as
determined in Ref. [29]. The smoothed image is segmented into two regions, air and silicon,
using local thresholding [47,48]. The region is determined by comparing each pixel to an offset
plus a weighted mean of the surrounding square of 1012 pixels. This use of a local threshold
is essential because there is an intensity gradient in the dataset. With a global threshold this
gradient would introduce a gradient in the pore sizes. The size of the comparison region and the
threshold were visually chosen to result in pore outlines that conform to the X-ray dataset. Lastly,



the marching cubes algorithm [49] is used to convert the segmentation into a pore boundary.

Figure 3b shows the silicon-air interface of the pores overlayed on the dataset after applying
the Gaussian filter. Based on the inverse woodpile design [37] of this sample we had expected
the pores to be circles or ellipses. However, both the reconstructed contours and the X-ray data
of Figure 3a shows that the pore shape and size varies significantly in the real crystal. Possible
reasons for these deviations include unknown subtleties in the etching [41,50], and image artifacts
in the X-ray holotomography reconstruction [29]. Nevertheless, the resulting pore shapes have
similar shapes as those seen in SEM images of the external surface of the same crystal, indicating
that the reconstruction is realistic.

The interfaces of the partial pores on the left and right boundaries are discarded to create a flat
crystal interface, similar to the interface of the actual inverse woodpile. The interface from the
segmentation step is used to constrain the meshing algorithm to get a mesh that exactly follows
this interface. An example of such a mesh is shown in Fig. 3c, which is the coarsest mesh used to
determine the accuracy of our results (see supplementary material). The transmission spectrum
and fields presented here use triangles with about 4x smaller edges, thus yielding accurate results.

3.3. Numerical

To compute the optical transmission of the reconstructed crystal we use a Discontinuous Galerkin
Finite Element Method (DGFEM) to solve the time-harmonic Maxwell’s equations [25,51-54].
The details of the method can be found in the supplementary material, in short we use an Interior
Penalty discretization for the time harmonic Maxwell’s equations using piecewise second order
Nédélec elements. Combined with the mesh that resolves the interface we accurately handle the
sharp contrast in the dielectric constant between silicon and air.

The computational setup is shown in Figure 4a. The mesh obtained from X-ray image
processing is extended by a layer of air on the left and silicon to the right. This is similar to
the real crystal, which is on the edge of a silicon beam [39]. We take the relative permittivity
of silicon as € = 12.1, matching with previous results [33,55]. On the top and bottom we
use perfectly conducting boundary conditions to create mirror symmetry. By using this on
both boundaries we obtain half of a structure that extends periodically in the vertical direction.
Alternatively, the two perfectly conducting boundaries can be interpreted as making the domain
into a strip waveguide, the resulting effects are further discussed in section 5.2

We consider light with the magnetic field orthogonal to the computational plane, in photonic
crystals known as TE polarization [1], and in waveguides as TM polarization [56]. As incident
fields we send in a plane wave from the air region, with the electric field parallel to the air-crystal
interface. This is the lowest order mode supported by the domain, denoted as the 0-th mode.

For the computation of the total electric field we use a scattering approach, where we consider
the computational setup as an air-silicon interface with the air-pores as added scatterers. The
total electric field is thus split into two parts E¢, = Ey + E, a background field E;, from the
interface and a field E from the scattering by the pores. The background field Ey, consists of
the incident plane wave and its reflection and transmission from the air-silicon interface, as
computed using the Fresnel equations [56]. This background field is scattered by the pores, the
resulting scattered field Eg is computed numerically. We use a Perfectly Matched Layer (PML)
to prevent the scattered field from reflecting off the left and right boundary of the computational
domain [57,58], the details of the PML can be found in the supplementary material.

For the transmission we calculate the energy flux into the PML behind the crystal. We compute
the transmittance by numerically integrating the normal component of the Poynting vector of the
total electric field over the interface between silicon and the PML. To obtain the transmission
we take the ratio of the transmittance to the energy flux from the incident plane wave, before its
reflection from the air-silicon interface.
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Figure 4. (a) The setup for transmission computations. To mimic real crystals the
reconstructed crystal structure is extended with air to the left and silicon to the right.
Plane waves are send in from the left. The hatched regions on the left and right are
PMLs which absorb the reflection and transmission from the crystal. For the top and
bottom we use mirror boundary conditions (perfect electric conductor), which extend
the domain periodically in the vertical direction. (b) The computational domain for the
derived disorder-free crystal.

3.4. Utopian model crystal

The pores of the reconstructed crystal vary in shape and size from the perfect cylinders in the
original design. The optical properties of the real crystal and our derived computational model
will therefore differ from predictions based on the original design. To asses these differences we
use the computational setup in Figure 4b. This setup uses a crystal structure with circular pores
with the design parameters fitted to get optical properties closely matching to the reconstructed
crystal. The structure can thus be seen in two ways, namely the structure that would have been
made in a utopian world with perfect manufacturing, or the best predictive model that would
have been used before manufacturing.

The utopian model is made by replacing the varied pores by circular pores placed on a 2D
centered rectangular lattice. This is the same type of structure as is used for the etch mask.
This design has three parameters, the lattice constants (a, c) and the pore radius r. These
parameters were adjusted to match the geometric and optical design of the reconstructed crystal.
We take the lattice parameter ¢ = 685 nm to match the width of the reconstructed and design
crystals. For the lattice parameter ¢ we have a choice, to measure it based on the sample length
¢ =6.19um/12.5 = 495 nm or to reuse the aspect ratio of all our designs ¢ = a/V2 ~ 484 nm.
We chose to keep the design aspect ratio, as this would have been used to predict the properties
of the real structure before manufacturing. The pore radius » = 126 nm was chosen so that the
model crystal has the same average pore area as the reconstructed crystal, and therefore the same
average refractive index [59], and hence the same gap center frequency [60].

4. Results

4.1. Transmission spectrum of the reconstructed crystal

Figure 5a shows the transmission spectrum of the reconstructed crystal between 2000 and
8000cm™!, in steps of 2 cm~!. Between 4812 and 5600 cm™! the transmission is below 1%,
indicating a photonic stopband. We distinguish three ranges in the spectrum, below, in and above
the stopband, each with different behavior, as discussed here. A log-transmission version of
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Figure 5. Numerical transmission spectrum for (a) the reconstructed crystal (red curve),
and (b) the utopian model crystal (blue curve), computed with 2cm™! steps. The
largest wavenumber range with transmission < 1% is the stopband, and the boundaries
are marked with dashed lines. The stopband for the reconstructed crystal is inside
the stopband for the derived design crystal. The crosses mark the wavenumbers for
which the fields are discussed in Section 4.3. The gaps in the spectrum are the result
of omitting transmission values for the few wavenumbers that are inaccurate due to
limitations of the PML, see supplementary material.

Figure 5a is presented in the supplementary material, as well as a convergence study demonstrating
that the computational error in the wavenumber is less than 2cm™".

Below the stopband the transmission shows broad fringes with some regions with sharp peaks.
In this spectral range we distinguish three subregions, depending on whether the fringes or peaks
dominate the spectrum.

(1a) Below 3600 cm™! the fringes dominate the spectrum with only one small extra peak at
2790 cm™!. The fringes have a peak-to-peak spacing of 270 to 300 cm™!, and vary in amplitude
from 17% to 39%. These fringes are typical for low frequencies, where a photonic crystal behaves
as an effective medium [59]. If a crystal has flat and plane parallel front and back surfaces, the
crystal behaves similar to a Fabry-Pérot etalon [61], revealing interference fringes as discussed in
Refs. [28,55].

(1b) Between 3600cm™! and 4550 cm™! the spectrum shows both fringes and sharp peaks.
The amplitude and width of the fringes between 4200 and 4550 cm~! is comparable to the fringes
below 3600 cm™!. The sharp peaks in this regime have an amplitude of at most 30%, similar to
the fringe amplitude. The onset of this regime is near 3649 cm™', where the second air mode of
the computational domain transitions from evanescent to propagating, as discussed in section 5.2.



(1c) Between 4550 cm ™! and the edge of the stopband at 4812 cm™" the spectrum is dominated
by sharp peaks with amplitudes varying to more than 80%. A region of fast changes in
transmission just below the stopband is similar to the compressed fringes below the stopband
of a 1D layered photonic crystal [28,62]. Since the peaks reveal varying mutual spacing and
bandwidth, it is also conceivable that they are in part speckle due to the randomness of the
nanostructure [63].

(2) At the low frequency edge of the stopband, just below 4812 cm™! we see a sharp decrease
from a bright 7 > 65% transmission peak at 4794 cm™! to near zero transmission. Between
4812 and 5600 cm™! the transmission is less than T < 1%, hence a stopband of the crystal.
This stopband matches well with the I' — K — B high symmetry stopgap predicted from 4771 to
5977 cm~! from Ref. [23], especially considering that they use a slightly higher € = 12.2. Just
above the stopband, up to about 6000 cm~!, the transmission increases with several very sharp
peaks. The width of these peaks varies from about 30 cm™! to less than 10cm~!, where the
sharpest peaks are too sharp to accurately determine the amplitudes.

(3) Above 5600 cm™~! the transmission shows many peaks of varying width and amplitude that
we attribute to random speckle. The minimum transmission is on average lower than in frequency
range 1b (3600 to 4550cm™").

4.2. Transmission of the Utopian crystal

Figure 5b shows the transmission spectrum of the utopian crystal. Between 4792 and 6000 cm™!
there is a stopband as the transmission is near zero (7" < 1%). This stopband divides the frequency
range into three parts, below, in and above the stopband.

(1a) Below the stopband up to about 4550cm™' the spectrum consists of smooth fringes
without sharp peaks, as expected for a perfectly periodic crystal. These Fabry-Pérot fringes
have a spacing of 270 to 300 cm™~! with an almost constant amplitude of about 20% and a slight
downward trend. Comparing with the reconstructed crystal in the same spectral range, we see
that the fringes match in spacing, but the fringes of the reconstructed crystal vary much more in
amplitude. Moreover, unlike the reconstructed crystal, there is no transition to a spectral range
(1b) with a mix of sharp peaks and fringes. Instead this spectral range is filled with the same
regularly spaced fringes. This difference supports the hypothesis that the sharp peaks are speckle
due to non-periodic structural features in the real crystal.

(1c) Near 4550 cm™! the spectrum transitions into a region where the transmission changes
faster with wavenumber with four or more peaks between 4550 and 4792 cm™!. These peaks
result in a much larger variation in amplitude from 50% to 100% and a fast drop to near 0% when
approaching the stopband at 4792 cm™!. In the same spectral range (1c) of the reconstructed
crystal, we see a similar pattern of sharp changes in transmission, but at lower amplitude. These
features are tentatively assigned as band-edge features.

(2) Between 4792 and 6000 cm™! the transmission vanishes, hence there is a stopband. The
stopband of the reconstructed crystal starts at 4812 cm™!, within 0.5% of the real crystal. The
close agreement of the low frequency edge of the stopband means that the averaging procedure
of the utopian crystal is a faithful representation of the real crystal. Moreover it also confirms the
common lore that the low frequency edge of a gap is robust to random disorder in a crystal [24].
A bigger difference is seen between 5600 and 6000 cm™~' where the utopian crystal still has a
stopband, but the reconstructed crystal shows gradually increasing transmission with some sharp
peaks. The stopband of the reconstructed crystal is thus narrower with 15% relative bandwidth
(ratio of band width and center frequency Aw/w.) compared to the 22% for the utopian crystal.

(3) Above the stopband we distinguish two wavenumber regions with sharp peaks in trans-
mission. Between 6000 and 7000 cm™! there are seven transmission peaks of about 70% spaced
between 110 and 190 cm~! apart. At 7000 cm™" the transmission is low, probably due to a narrow
higher-order stopgap in the bandstructure. Above 7000cm™! there are four peaks visible spaced
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Figure 6. Magnitude of the total electric field |Eiy| resulting from a plane wave
at v = 3280cm™! incident on the (a) reconstructed and (b) utopian crystal with
transmission of 87% and 61% respectively. The colorbar is normalized to 1.5 times
the incident intensity. The dashed line in (b) indicates the position of the air-crystal
interface for both crystals.

190 cm~! with increasing maximum transmission to almost 100%. These predictable patterns in
the transmission are completely different from the random speckle seen for the reconstructed
crystal. Nevertheless, comparing the peaks between 6000 and 7000 cm™! there are transmission
peaks at almost the same wavenumber, but with more varying maximum transmission.

The sharp peaks in the reconstructed crystal spectrum at frequencies inside the utopian
stopband, so between 5600 to 6000 cm™!, may be Anderson-localized that contribute to a Lifshitz
tail in the density of states (DOS) in a gap, see also Refs. [64,65]. The unambiguous identification
of Anderson-localized states requires extra steps such as finite-size scaling [66, 67], which is
outside the scope of our study.

4.3. Electric field distributions

While the transmission contains information that is averaged over the whole thickness of the crystal,
different physical quantities must be considered to obtain insights in the optical consequences of
the structural features inside the crystal. To this end we now discuss the electric field distribution
inside the crystal at several salient frequencies, which are marked with an ‘x’ in the transmission
spectrum in Figure 5.

Figure 6 shows the field at 3280 cm™!, below the stopband in the fringe range (1a), where both
crystals show clear Fabry-Pérot fringes without sharp peaks. The reconstructed and comparable
design crystals have a transmission of 87% and 61% respectively, which is apparent in the
different amplitude of the fringes in the air region. The field shows the outline of the pores, with
the field inside the pores, and especially on the edges, being larger than in the silicon. If we
compare patterns and field strengths around different pores in the same crystal we observe great
similarity.

Figure 7 shows the fields at 4736 cm™!, just below the stopband in the range of fringes and
speckle (1c range). The transmission for the reconstructed and utopian crystal are almost the
same at 81 % and 77 %. Nevertheless, there are significant differences between the field inside
the real crystal and the utopian structure. In both crystals we observe that the field is strongest
around the pores, but there is much more variation in the direction of propagation. For example,
along the centerline of the crystal there are regions with almost zero field strength, and regions
where the field is more than 2x the incident field strength. Comparing the real crystal with
the utopian one we observe that the real crystal shows additional differences in the transverse
direction, with the field on the bottom side being on average stronger than on the top.

At the front surface of the crystal we observe two differences between the reconstructed
and utopian crystals. Firstly, the interference pattern of the incident and reflected wave has a
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Figure 7. Magnitude of the total electric field |Eio| resulting from a plane wave
at v = 4736cm~! incident on the (a) reconstructed and (b) utopian crystal with
transmission of 81% and 77% respectively. The two dashed lines are guides to the eye
to highlight that the wavefront is tilted with respect to the normal incident field. The
colorbar is normalized to twice the incident intensity and is insufficient to resolve the
locally very strong fields. The dashed line in (b) indicates the position of the air-crystal
interface for both crystals.

Figure 8. Magnitude of the total electric field |Eq| resulting from a plane wave
at v = 5700cm™! incident on the (a) reconstructed and (b) utopian crystal with
transmission of 6 % and 0 % respectively. The colorbar is normalized to twice the
incident intensity and is insufficient to resolve the locally very strong fields. The dashed
line in (b) indicates the position of the air-crystal interface for both crystals.

different angle with respect to the interface. For the reconstructed crystal this is slightly tilted as
highlighted by the dashed lines, while for the utopian crystal it is perfectly vertical. The diagonal
interference pattern for the real crystal is the result of reflecting part of the light into the first
mode. The utopian crystal and the incident beam are symmetric along the center line of the
domain, reflecting the incident light into the first mode is incompatible with this symmetry. The
varied pores in the real crystal break this symmetry, and thus allow reflecting into the first mode.
Secondly, we note that there is a large difference in the field strength on the air side of the crystal.
In specific cases such difference could be very important, for example when placing quantum
dots on the surface, but we do not have a good explanation for why it happens.

Figure 8 shows the fields at 5700 cm™'. For the reconstructed crystal the transmission is 6 %,
and the wavenumber is on the low-wavenumber side of a sharp transmission peak (that is not fully
resolved by the computation, and whose maximum transmission is at least 30 %). For the utopian
crystal the wavenumber is inside the stopband and the transmission is thus vanishingly small.

While the reflection in both cases is almost complete, the field inside the crystal is radically
different: In the reconstructed crystal the field has an amplitude comparable to the amplitude of



the incident field, with regions where the field has more than 2 the incident amplitude. The field
is strongest in the bulk of the crystal away from the surfaces and reveals a random longitudinal and
transverse distribution, somewhat similar to speckle in a (non-absorbing) random structure see,
e.g., Ref. [68]. For the utopian crystal we observe that the field decays exponentially away from
the front interface of the crystal to values below the computational accuracy. The Bragg length
corresponding to this decay is Igr = 775 nm, or about 1.6 lattice constants in the propagating
direction. This is much less than the size of the crystal in propagation direction (L = 6190 nm).
Hence, since /gr < L, the crystal is in the thick-crystal limit and the effects that we observe are
bulk crystal effects with few surface effects expected.

Let us put this Bragg length in perspective with previous work: In Ref. [69] the Bragg length
is derived from measurements of a real crystal with the same structure as studied here, but with
slightly larger pores (r/a = 0.21, here 0.18). Based on the relative width of the stopband they
compute a Bragg length of /gg = 2.0 x 10% nm, a bit larger than here. However, if we use the
same derivation from the bandwidth in our spectra we get a Bragg length of Igg = 2.7 X 10° nm,
a close agreement. The difference between the Bragg length derived from spatial intensity
decay (its definition) versus the one derived from stopband width is attributed to the fact that
in the latter a weak photonic interaction assumption is made [60], that is clearly violated in
silicon-air nanostructures. In Ref. [55] the Bragg length was computed for a 3D inverse woodpile
by varying crystal thickness. Such a crystal is not directly comparable due to the difference in
dimension (3D vs 2D). Nevertheless, by converting their Bragg value to our crystal size, we get
Igr = 180,290 nm for s and p-polarization, respectively, in reasonable mutual agreement.

5. Discussion
5.1. Utopian crystal as a model

In the vast majority of literature utopian models are used to predict or understand the optical
properties of real crystals. By comparing the results of the real and utopian crystal we now
address the question: “How accurate is the utopian model as predictor or source of explanations?”

We find that the frequency spectrum of the utopian model to be very ordered. Below the
stopband there are Fabry-Pérot fringes, a short range of near-stopband effects, then a stopband,
followed by ordered peaks above the stopband. Only part of this ordered structure is observed
with the real crystal. Fabry-Pérot fringes are also present in the real crystal with accurately
predicted spacing, but more varied amplitude. These fringes are only partially visible near the
stopband, which we attributed to frequency speckle. The stopband and its lower band edge are
accurately predicted, although the width is significantly smaller. The ordered peaks above the
stopband of the utopian crystal completely miss the prediction of frequency speckle as with the
real crystal.

In general we see that there is a better correspondence at low frequency than at high frequency.
This is logical if we view the real crystal as a utopian crystal with additional scatterers from the
deviating pores [22]. The frequency spectrum of the real crystal is then a combination of the
ordered spectrum of the utopian crystal with additional features due to the inclusion of scatterers.
The strength of these scatterers increases with frequency as their size relative to the wavelength
increases. Correspondingly, the scattering mean free path due to all pore-variation scatterers
decreases with frequency, increasing the effect of the scattering with respect to the background,
and thereby decreasing the accuracy of the predictions from the utopian crystal.

With this model in mind we can also explain the great similarity of the electric fields at the
lowest frequency. At such low frequency the pore-variation scatterers are very weakly scattering
and the mean free path / is much longer than the lattice size a. This is backed up by the presence
of Fabry-Pérot fringes in the spectrum as for a stronger scattering sample with / < L = 8.5a the
scattering would disrupt an interference effect like Fabry-Pérot fringes.

Two of these robust features, the frequency of the bandgap and the spacing of the Fabry-Pérot



peaks can be predicted using the crystal lattice and volume fraction, but without considering
the exact pore shapes. Specifically, consider the effective refractive index computed from the
average dielectric constant [70] neg = \/(? ~ 2.96, where the averaging is done based on the
70% silicon and 30% air in a unit cell of the utopian crystal. Based on this and the length of
the crystal L = 6190 nm, the Fabry-Pérot fringes are spaced at Ay = (2Lneg) ™' =272 cm™,
while we observe 270 to 300 cm~! in excellent agreement. Similarly, by considering the crystal
lattice and the corresponding Bragg peaks as in Ref. [23], we obtain an expected position of the
stopband at 3/4 X (cne) ™' = 5235 cm™!, practically in the middle of the stopband of the real
crystal and on the lower half of the utopian crystal.

While the utopian model adds the additional accurate prediction on the lower bound of the
stopband, it is fundamentally unable to predict the speckle observed both above and below the
stopband. This speckle is the result of the varied shapes and size of the pores, ultimately resulting
from entropic effects in the manufacturing. These features are lacking in the utopian model, and
that is precisely what makes the utopian model utopian.

5.2. Effects of boundary conditions

The two mirror boundary conditions in the computational setup were used because of the limited
width of the dataset. The use of mirror boundary conditions gives realistic pores on the edges of
the domain, but has as side effect that the computational domain forms a waveguide. The use of
such a waveguide geometry rather than a freestanding crystal has two implications.

The first implication is that at a fixed frequency only a few propagating modes are available.
This is especially important in the air region, where the cutoff frequency of the TE; mode
at 3649 cm™! is inside the relevant frequency range. Below this cutoff there is only a single
propagating mode in the air region. Above this cutoff there are two propagating modes and we
see two changes: there are no longer clear fringes in the transmission spectrum, and there is a
reflection into the propagating TE| mode. Clear fringes, like those below the cutoff frequency,
are expected when the wavelength is too long to be affected by the very local variation in pore
shapes. The sudden transition in our results at the cutoff of the TE; mode is thus in all likelihood
an artifact of our geometry. We expect that with a wider waveguide, and thus a lower cutoff
frequency, the transition will happen at a lower frequency.

We note that the cutoff frequency for the TE| air-mode is the same for the utopian design.
However, the utopian crystal has a width of two unit cells. The symmetry in the domain implies
that the utopian crystal can only reflect and transmit into the T Ey, T E4, T Eg, etc. air and silicon
modes [71]. In the computed spectral range, the utopian crystal has one mode for reflection and
up to two for transmission, while the reconstructed crystal has up to three modes for reflection
and up to seven for transmission.

The second implication is that each mode on the reflection and transmission side corresponds
to a specific frequency-dependent angle. The current computational setup thus allows to describe
only an incident wave at these specific angles. The extension to true angle resolved problems
is theoretically simple. Applying the mirror boundary condition one gets periodic boundary
conditions. Generalizing these to quasi-periodic would then support incident waves at arbitrary
angles.

5.3. Reconstruction

An essential part of our study is the reconstruction process that was used to obtain the crystal
structure from the X-ray data. Design choices such as representing the pore outline by a polygon,
the algorithm used for the segmentation and the employed parameters all affect the shape and
size of the pores in the reconstructed crystal, thereby affecting the transmission spectrum and
electric fields presented here. However, the question is if the changes from a different design,
algorithm or parameter will meaningfully influence the results and conclusions presented here.



We discuss three different aspects of this question.

The effects of which segmentation algorithm is used and the subsequent choice for its parameters
are naturally intertwined. Ideally, the effects are quantified through sensitivity analysis, but that
is a laborious task, hence we take an alternative approach. Both the algorithm and parameter
choices influence the size of the pores and their shapes and thus the resulting transmission spectra.

Firstly, we study the effect of the pore shapes. The reconstructed crystal consist of 60 pores
each with a different shape. Thus, it is extremely unlikely that any similarities between the
spectrum of the reconstructed and utopian crystals are accidental. It is far more likely, as we
concluded, that these similarities are robust with respect to deviations in the pore shape.

Secondly, we consider the effect of varying the pore size. The effect of the pore size is taken
into account by matching the pore size of the utopian crystal to that of the reconstructed crystal.
Hence, the pore size cannot be the source of the differences between the reconstructed and
utopian crystals. The strong influence on the similarities between the spectra of the reconstructed
and utopian crystals is seen from the comparison with the effective refractive index model. The
only free parameter in this model is the effective refractive index, which follows from the pore
size via the silicon air ratio. The fact that this model accurately predicts the similarities shows
both that the pore size is important for the actual spectrum, and that it can predict its effects.

Thirdly, the reconstruction algorithm reconstructs the air-silicon interface as a polygon. Such
a polygon has corners, and these are known to create locally very strong fields from corner
singularities [72]. Indeed, in the computed electric fields we observe locally very strong fields
at the corners of the pores. The X-ray data does not have sufficient resolution to determine
whether such corners exist, and we do not necessarily expect them from the manufacturing
process. Therefore, it is not unlikely that the air-silicon boundary is smoother in the original
crystal than in the reconstructed crystal. Such a smoother boundary could be made by describing
the interface by curved line segments. The usefulness of doing this depends on what the results
are used for. Curved boundaries will remove or reduce the corner singularities and locally reduce
the very extreme fields. We expect that the effect on global properties like the transmission is
limited, but that it is more important for local quantities like the LDOS.

5.4. Outlook: real crystal computation

The computation presented here is a first demonstration of a data-driven photonic crystal
computation. We envision three broad directions how our method can be extended.

Firstly, the computations presented here consider a plane wave incident on a 2D waveguide
setup, which is unlike the experimental setup of focussing a beam on a 3D finite size crystal. A
better understanding of the experimental situation will be gained by changing the computational
setup to more closely align with reality. A computation of a completely realistic situation is far
beyond current computational capabilities, but understanding the effects of individual differences
such as the finite width or 2D structure are more realistic.

A second direction is to consider several forms of sensitivity analysis based on the current
computational setup. The sensitivity of the results with respect to the parameters used in the
reconstruction will give a more rigorous idea on how accurate we need to be in the reconstruction.
This could be used to verify our expectation that the spectral features that are shared by the
reconstructed and utopian crystals are relatively robust. Moreover, looking at sensitivity to
local deformations of the pore shapes may provide better insight into whether there are types of
deviations that more strongly influence the performance of the crystal structure and thus require
attention in the manufacturing process.

A third direction is to focus on how accurate the reconstruction of the real crystal is, with
the goal of creating the perfect reconstruction for the best comparison with experimental work.
The current approach to the reconstruction and especially the selection of the parameters is
based on visual judgment of the result. One consequence of this is that the pore size is likely



different from that of the actual crystal. Such differences could be resolved by calibrating the
reconstruction process against the actual structure. Such a calibrated reconstruction will provide
a better candidate for a comparison between computation and actual measurements, and therefore
understanding of the individual sample.

6. Conclusions

In conclusion, we have developed and presented a new data-driven approach to computational
nanophotonics. The essence of this approach is to use a reconstruction of a real nanostructure,
including all its manufacturing deviations. These deviations significantly impact the optical
performance of real nanostructures, but are absent from traditional computational nanophotonics
where one considers structures so perfect that they can only be made in a manufacturing Utopia.
Comparison of traditional computational results with real measurements is thus fraught with
many possible causes of differences, but there is no way to distinguish between them. Our method
provides an intermediate between these two extremes that allows better understanding in the
relevance of theoretical results and insight in the working of actual devices.

To demonstrate our new method, we apply it to a X-ray imaging reconstruction of a photonic
bandgap crystal with inverse woodpile structure. This is done by processing a 2D slice from the
reconstruction in a computational mesh. This mesh is then used to compute the transmission
through the reconstructed crystal over a broad frequency range. For a comparison with existing
models we consider the transmission through a matching utopian crystal, a crystal with perfectly
round pores and matching fill fraction.

For the reconstructed crystal we observe Fabry-Pérot fringes, a stopband and frequency
speckle. The utopian model shows similar Fabry-Pérot fringes and a slightly wider stopband.
The speckle seen with the reconstructed crystal is completely absent from the utopian model, and
the transmission above the stopband is thus completely different.

The use of computational methods allows, unlike experiments, to study the fields everywhere
inside the crystal in detail. We have thus compared the fields inside the reconstructed and utopian
crystal at three sample frequencies. We observed major differences in the fields at constant
frequency, which are not apparent from external probes like transmission.
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1. TRANSVERSE MODES

The two mirror boundaries on the top and bottom of the domain create a waveguide like geometry.
This creates a problem with the PML, which can not absorb these modes near their cutoff
wavenumber. Here we highlight the cause of this problem.

The mirror boundaries at x = 0 and x = L restrict the momentum in x-direction to

mm
Ly /€p’

where m is an integer and € and y are the relative permittivity and permeability [1]. The corre-
sponding modes have a field that is the interference pattern of two plane waves

. 1 . 1 . . cos(ky mx
Em(x,v) eikvy L etkem¥ 4 . e thxmx | _ pikyy . (kx,mx) 2)
i/m ]z,m 21 lz,m Sin(kx,mx)
y Y - y

with the momentum in y-direction following from the wavenumber v and the dispersion relation

(S1)

kx,m =

pev? = 47'(2(k§,m + ki) (S3)

Each mode has a cutoff wavenumber v, = 27tky, i/ \/€ji where the mode transitions from evanes-
cent behavior with imaginary k, to propagating behavior with real k.

The spurious reflection of these modes from the PML depends on the design of the PML and
whether a mode is evanescent or propagating. For both propagating and evanescent modes the
spurious reflection R follows the relation [2]

In(R) o —|ky|. (S4)

This is a problem near the cutoff wavenumber, because |k,| — 0 and R — 1 as v approaches the
cutoff. The spurious reflection will thus approach 1 near the cutoff wavenumber. The properties
of the PML, like the profile and thickness, can adjust the rate at which it approaches 1. Adjusting
these will impact the computational cost and the spurious reflection from the discretization.

For the computations presented here, we choose to adjust these parameters to reduce the
spurious reflection in the neighbourhood of the cutoff frequencies. For the frequencies very
close to the cutoff the parameters are not sufficient to completely remove the spurious reflection.
Therefore, we inspect the amplitude of the solution at the far end of the PML. If the amplitude is
larger than 0.1 times the incident amplitude, then the spurious reflection is at least 1% and we
discard the transmission value for that wavenumber as inaccurate.

2. LOG TRANSMISSION

Figure S1 shows the transmission spectrum of Figure 5 with log-transmission scale. We observe
that the transmission decreases rapidly at the upper and lower edges of the stopband. Inside the
stopband the transmission is smaller than the violation of energy conservatione = [T + R —1|.
This energy violation is a lower bound for the numerical error in the transmission, therefore
transmission values less than e are considered to be not significant and have thus been omitted.



5,

101

1073

Transmission

1077

—_

10~

1073

1075

Transmission

107

107° f

Wavelength (nm)
000 3,000 2,000 1,500 1,250

——

- a) Reconstructed :

: 1
TN
s B
Yl r

W L

2,000 3,000 4,000 5,000 6,000 7,000 8,000

Wavenumber (cm™1)

Fig. S1. Numerical transmission spectrum from Figure 5 with transmission on a log scale, (a)
the reconstructed crystal and (b) the utopian model crystal. The black lines correspond to two
sources of numerical errors, (dashed) the error in energy conservatione = |T + R — 1| and

(dotted)

spurious reflection of the PMLs (see Appendix 1). Transmission values that are below

either of these curves are left out.
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Fig. S2. Small section from the numerical transmission spectrum for the a) reconstructed crys-
tal computed on three meshes, approximately doubling the mesh resolution in each step. Each
mark corresponds to one computation, connected by straight lines to guide the eye. The trans-
mission curve at higher mesh resolutions have the same shape, but the wavenumber axis is
stretched. The same effect is visible for the b) utopian crystal, with the transmission for the
smallest two meshes practically overlapping. The location of both sections is chosen to make
the differences between the three meshes clearly visible.

3. NUMERICAL ACCURACY

To investigate the accuracy of our results we study the effect that mesh refinement has on the
transmission spectrum. For both crystals we consider meshes of three different resolutions. For
the utopian crystal we start with a coarse mesh with elements of size 1. Each curvilinear triangle is
subdivided into four smaller ones to obtain a mesh with size /1/2, and a second time to get a mesh
of size 11/4. This subdivision was not possible with the mesh generated for the reconstructed
crystal, hence we created three different meshes. The mesh generated for size & specifies for each
part of the domain (PML, crystal, etc.) the maximum area of an element, resulting in a mesh with
18351 triangles. For meshes of size h/2 and /1/4 the constraints on the maximum area was divided
by 22 and 42 respectively resulting in meshes with 72006 and 287665 triangles respectively. The
coarsest mesh (size h) for the reconstructed mesh is shown in Figure 3¢, the transmission spectra
and fields presented in the main text are using the meshes with resolution //4.

We computed the transmission spectrum for all three meshes of both crystals, keeping all
other parameters identical. Figure S2a shows a small part of the transmission spectrum for
the reconstructed crystal computed on these three meshes. We observe that shape of the three
transmission spectra are visually identical, but they are offset with respect to each other. This shift
is caused by the numerical method introducing a slight error in the phase, thereby stretching or
compressing the wave [3]. This effect increases with wavenumber and larger elements. Compared
to the best resolution (1 /4), we see a shift of slightly more than 2 and less than 1 wavenumber
step for the meshes of size I and //2 respectively. This shows that the wavenumber error of our
results is smaller than 1 wavenumber step of 2cm™!.

Figure S2b shows a similar transmission plot for the utopian crystal. This is zoomed on a



very sharp peak at slightly lower wavenumber. We observe almost no difference between the
transmission spectra of the meshes with resolution /1/2 and /1/4, the transmission spectrum for
the mesh with resolution / is shifted by approximately 1 wavenumber step corresponding to
2cm~ L

In conclusion, the finite mesh size introduces a wavenumber error. For the meshes used (size
11/4) the error is smaller than 1 wavenumber step of 2cm ™! for the reconstructed crystal and
negligible for the utopian crystals. Hence, the effects of a finite mesh are so small that they do not
impact the conclusions presented in the main text.

4. NUMERICAL METHOD

To compute the transmittance we split the total electric field Eit = E; + Ep into a known
background field E, and numerically computed scattered field Es;. This scattered field is the
solution to the following variant of the time harmonic Maxwell’s equations

V X 71V x Es — v%€Es = V x 51V x E, — v%€E,, (S5)

where p1 and € are the relative permeability and permittivity, respectively, v is the wavenumber.
For simplicity we will denote the known right hand side by j. The use of a PML requires the
modification of the permeability and permittivity in the PML regions to tensors (?) and ?) and
assumes j = 0 in these regions. We therefore solve

V x @IV x By — 1> €Es = j, (S6)

and assume perfectly conducting boundary conditions n x Es = 0 with n the outward normal.

A. Finite element method

We use an interior penalty discontinuous Galerkin finite element method (IPDGFEM) to solve
Eq. S6 numerically. Versions of this method, with additional simplifying assumptions for the
theoretical analysis, have been proposed and analyzed in literature [4-7].

Let 7}, be a triangulation of the computational domain (), and denote the set of faces by Fj,. As
solution space we use the space spanned by the discontinuous second order Nédélec functions
of the first kind on this triangulation [8]. Specifically, given an triangle T define the Nédélec
functions as

E(T) = {v € [Po(T)]? ( v.te P, (e]-), j= 1,2,3}, (S7)

where P,(D) are the complex valued polynomials of degree at most 2 on a domain D, and ¢; the
edges of the triangle with t as the tangent vector. The finite element space is formed by

V= {v € [LZ(Q)]Z

vlr € £(T), vTeTh}, (58)

where L2(Q) are the square integrable functions on the computational domain ). The extension
to curvilinear elements, which is used to more accurately represent the circular pores of the
utopian crystal, follows standard procedure of using isoparametric maps [8].

A function v € V is two valued on any internal face F between elements T; and T,. Denote
by v; and v; the values as limit from T; and Ty, respectively, and denote by n; and n; the unit
outward normal on the face from T; and T, respectively. On a face we define the following jump
and average operators:

[vlr =n; X vi +np X vo and {v} = %(V1 +v7). (S9)
On a boundary face F with outward normal n we define them as
[vlr=nxv and {v} =wv (S10)
The sesquilinear form for IPDGFEM is defined as

w(Ev) =Y [

Ter, /T (?ﬁv x Es) "V xvdx

= L JIE A7+ 7V e
FeF,

ar —
v F;h /F Gl [V ds, (S11)



where V denotes the complex conjugate of v, ar is a stabilization parameter, that we set to 100,
hr is the diameter (length) of face F, and u~ is the inverse of the Hermitian transposed of the
tensor .

The numerical problem is to approximate E; by a function from V that satisfies

0 (B v)—? [ (FB)-vdx= [ jvdr  wev. (812)
Q Q
The resulting system of linear equations is solved with a direct solver.

B. PML

The implementation of the PML directly follows [3]. Specifically, consider a PML region that
should absorb waves in y direction from y = 0to y = L,y from a region with material coefficients
€ and . Define

d(y) =1+ %ayz, (S13)

where i is the imaginary unit and a is a parameter that defines the strength of the damping. The
material tensors in the PML layer are defined as

€ (y) = e diag(d(y), 1/d(y)), (Sl4a)
W (y) = u diag(d(y),1/d(y)), (S14b)

where € and y are the material parameters of the underlying material, e.g. the ones for silicon for
a PML attached to a silicon region.

The parameter g is computed so that the PML dampens a normal incident plane wave by a
factor Ry = 104 via the formula

logRy = —%ﬁaL%, (S15)

where L is the depth of the PML. The very small spurious reflection, Ry = 10—40, only applies to
the lowest order mode, for higher order modes the spurious reflection is wavenumber dependent.
The choice Ry = 100 ensures that spurious reflection of higher order modes decays quickly
above their cut-off wavenumber. This can be seen in dotted lines in Figure S1, where the spurious
reflection drops quickly to the right of each peak.
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