EPDIC 14, Aarhus, DK 17-06-2014

Difficult structures come in a variety of flavors

Stef Smeets Laboratory for Crystallography ETH Zurich, Switzerland

A taste of the problem

A taste of the problem

Outline

Multiple phases

Structure solution of a decomposed MOF

Severe reflection overlap

Zeolite solved with electron and powder diffraction

Structure completion

Locating the organic template in zeolites

SwissFEL

New opportunities for structure solution

Multiple phases

Structure solution of a decomposed MOF

HKUST-1

Metal-organic framework

- Efficient and versatile material for reversible CO₂ sorption
- 3D-framework with 6 Å pores
- Moderate steam stability

G. Majano et al., Adv. Func. Mater. 2014

HKUST-1 reconstruction

HKUST-1 decomposed with HCl

8

Identify phases by peak shapes

9

Indexing of both phases

Indexing of phase 1

- Charge flipping (Superflip)
- 1519 refs, 48% overlap, d_{min}=0.93 Å

- Linker partially coordinated
- 1D polymer along *b*
- Layered

- Linker partially coordinated
- 1D polymer along b
- Layered

Ζ

- Linker partially coordinated
- 1D polymer along *b*
- Layered

Х

Indexing of phase 2

- Charge flipping (Superflip)
- 1216 refs, 88% overlap, d_{min}=0.93 Å

X

Y

• Position of linker? How does it affect the space group?

• 3.5 Å layer distance (Cu—Cu)

- Position of linker? How does it affect the space group?
- 3.5 Å layer distance (Cu—Cu)

Simulated annealing

- What do we know?
 - Cu, BTC, H₂O/OH⁻
 - Cu coordination
 - Position of Cu
 - Layered
 - *P*2₁
 - Guess position of organic linker
- Use flexibility of TOPAS

Simulated annealing

- Comparison of solution with density map from charge flipping
- Dimer
- Layered
- Linker partially coordinated

Dual phase refinement

Summary

- Phases identified based on their peak shape
- Solved using Superflip (CF), Topas (SA) and chemical interpretation
- HCl structures helped discern H₂O/steam degraded materials

Severe reflection overlap

Zeolite solved with electron and powder diffraction

Indexing of SSZ-87

26

Indexing of SSZ-87

A. A. Coelho, J. Appl. Crystallogr., 2003

Structure solution of SSZ-87

Failed using:

- FOCUS
 - Zeolite specific, looks for 3D-connected frameworks
- Charge flipping (Superflip)

 Collect rotation electron diffraction (RED) data on 6 crystals

Rotation electron diffraction

- 6 data sets of suboptimal quality
- Indexing was difficult
 - Different unit cells (P1)
 - Could not be matched against XRPD data
- PLATON (LePage routine)
 - Looks for higher symmetry
 - Use high tolerances ($\pm 1 \text{ Å}, \pm 2^{\circ}$)
- Use XRPD cell to verify cell from RED

RED: D. Zhang et al., Z. Kristall., 2010; PLATON: A. L. Spek, Acta. Cryst. D, 2009

Indexing of the RED data

• Unit cell comparison

	а	b	С	β	Volume
XRPD	21.19	17.83	12.30	124.79	3813.6
RED	21.21	17.11	11.96	125.62	3474.6

Reasons:

- Crystal damage by beam/high vacuum
- Microscope calibration
- Incomplete implementation of the RED method

Indexing of the RED data

• Only 1 series could be matched

- Tilt series -44.9° to 53.9°, 107 frames
- Large missing cone
- Low resolution

Completeness RED data

444 observed177 unique out of 1176 expected

Structure solution

- Solved with FOCUS
 - Zeolite specific program
 - Looks for 3D-connected frameworks
 - RED intensities, XRPD cell

Structure completion

Locating the organic template in zeolites

Organic template in zeolites

<u>Organic template</u> Tetrapropylammonium (TPA)

Why?

- Understanding zeolite formation
- Calcination affects sample integrity
- Structure validation

ZSM-5 with organic template and $F^{\scriptscriptstyle -}$

Organic template in zeolites 1998-2014

Number of structures: 80 (Database of zeolite structures)

Organic template found from data

Number of structures: 80 (Database of zeolite structures)

Difference map of ZSM-5

• TPA⁺ and F⁻ are easily located from difference map

Pnma a=20.07 Å b=19.92 Å c=13.42 Å

Difference map of SSZ-87

Organic template

Simulated annealing (TOPAS) → Find starting location for refinement

Caveats:

- 1. Disorder
- 2. Framework symmetry

Completing the structure

- 1. Refine scale (use high angle data)
- 2. Get a model for the template
 - Generate it (SMILES; Jmol)
 - Database (CSD)
- 3. Add to TOPAS as rigid body
 - Z-matrix (openbabel/ibabel)
- 4. Simulated annealing
 - Framework, anti-bump, internal axes, restaints, ...

Refinement of SSZ-87

Difference map for SSZ-61

Summary

- Structure of SSZ-87 could be solved by combining powder and electron diffraction data
 - Unit cell from XRPD data
 - Structure solution from RED data
- Routine for structure completion has been applied successfully in several cases

SwissFEL

New opportunities for structure solution

SwissFEL

PSI, Switzerland 2016

Free electron laser

- Ultrashort, coherent X-ray pulses
- High brilliance

SwissFEL specific

- Broad bandpass beam mode (4% bandwidth)
- Develop methodology to use this mode for structure solution

4% bandwidth

More data per shot than monochromatic beam

- Nanosize crystals (<500 nm)
- Randomly oriented stationary crystals
- Crystal destroyed by pulse
 1 shot = 1 frame
- Collect data on many crystals

SwissFEL, Switzerland, 2016

For now: Simulate 4% bandwidth

Synchrotron (SNBL@ESRF) "scan the monochromator"

Single crystal Single rotation axis

2 methods for indexing

- ✓ Laue diffraction (Xmas)Pattern matching
- ✓ Single crystal approach Match d-spacings (±2%)
- → Scale & merge all data

- Single crystal data
- Shelx (simulated data)
 - 100 crystals
 - 70% completeness
 - ✓ Direct methods
 - ✓ Dual-space methods

Advantages

- Single crystal data
- Reliable intensities
- Beam damage avoided

Challenges

- Sample preparation
- Indexing
- Scaling/merging

Conclusions

- Knowing what to look for helps with structure solution
- Low quality ED data may be better suited for structure solution of complex zeolites than good quality XRPD
- Flexibility of simulated annealing in TOPAS is ideal for structure completion
- SwissFEL provides a new alternative for structure solution