IUCr 2014, Montreal, Canada 06-08-2014

When two bad data sets are better than one

Stef Smeets Laboratory for Crystallography ETH Zurich, Switzerland

One data set is not enough...

One data set is not enough...

Outline

<u>SSZ-61</u>

Zeolite solved with model building from electron microscopy and powder diffraction

<u>SSZ-87</u>

Zeolite solved with electron and powder diffraction

Structure completion

Locating the organic template from low resolution data

Zeolites

- Porous silicate materials
- 3d-connected frameworks
- Tetrahedral connectivity Si
- Bond distances/angles known

FOCUS

- Automated model building
- Ab initio, dual-space method
- Adapted for electron diffraction data

Organic cation in zeolites

Tetrapropylammonium (TPA)

- Structure directing agent
- Promote different frameworks
- Removed by calcination

ZSM-5 with organic template and $F^{\scriptscriptstyle -}$

SSZ-61

Zeolite solved with model building from HRTEM and XRPD

Indexing of SSZ-61

Data collected with Mythen-II at MS Powder Beamline, SLS, PSI

Indexing of SSZ-61

10

	а	b	С	β	Sp. Gr.
MTW	25.55	5.26	12.12	109.3	C2/m
SFN	25.22	5.26	15.02	103.4	C2/m
SSZ-61	25.03	5.30	19.99	104.6	C2/m

• Database of zeolite structures

MTW

SSZ-61

SEM + HRTEM

- Ultramicrotome to slice needles
- Through-focus HRTEM
- MTW intergrowth

NMR by Sonjong Hwang, Caltech, USA

Refinement failed

As made SSZ-61

SDA fit with framework

SDA fit with framework

Difference map for SSZ-61

Organic template

Structure completion

Locating the organic template from low resolution data

Locating the SDA

Difference map ZSM-5

Tetrapropylammonium (TPA)

Why?

- Understanding zeolite formation
- Calcination affects sample integrity
- Structure validation

Organic template in zeolites 1998-2014

Number of structures: 80 (Database of zeolite structures)

Organic template found from data

Number of structures: 80 (Database of zeolite structures)

Locating the SDA in SSZ-61

Organic template

Caveats:

- 1. Disorder
- 2. Framework symmetry

Simulated annealing (TOPAS) → Find starting location for refinement

Refinement of SSZ-61

33

SSZ-87

Zeolite solved with electron and powder diffraction

Indexing of SSZ-87

Data collected with Mythen-II at MS Powder Beamline, SLS, PSI

Indexing of SSZ-87

37

A. A. Coelho, J. Appl. Crystallogr., 2003

Structure solution of SSZ-87

Failed using:

- FOCUS
 - Zeolite specific, looks for 3D-connected frameworks
- Charge flipping (Superflip)

 Collect rotation electron diffraction (RED) data

Rotation electron diffraction

- 6 data sets of suboptimal quality
 - Crystal damage by beam/high vacuum
 - Microscope calibration
 - Incomplete implementation of the RED method
- Indexing was difficult
 - Different unit cells (P1)
 - Could not be matched against XRPD data
 - Which was correct?

Indexing of the RED data

- PLATON (LePage routine)
 - Looks for higher symmetry
 - Use very high tolerances $(\pm 1 \text{ Å}, \pm 2^\circ)$
- Unit cell comparison

	а	b	C	β	Volume
XRPD	21.19	17.83	12.30	124.79	3813.6
RED	21.21	17.11	11.96	125.62	3474.6

• Use XRPD cell to verify cell from RED

Indexing of the RED data

- Tilt series -44.9° to 53.9°, 107 frames
 - Large tilt step (~1°)
- Large missing cone (180°)
- Low resolution

Completeness RED data

444 observed177 unique out of 1176 expected

Structure solution

- Solved with FOCUS
 - Looks for 3D-connected frameworks
 - RED intensities, XRPD cell
 - Asymmetric unit: Si₁₀O₁₉
 (Cell: Si₆₄O₁₂₈)

Difference map of SSZ-87

Organic template

Simulated annealing (TOPAS) → Find starting location for SDA

Refinement of SSZ-87

45

Summary

• Structure of SSZ-61 was solved by model building from HRTEM, NMR and XRPD

- Structure of SSZ-87 was solved from low resolution ED data by combining it with XRPD using FOCUS
- Simulated annealing in TOPAS was used to locate the organic cation in both cases

Conclusions

- Limitations of powder diffraction data (good or bad) can be overcome by combining data from other sources
- Low quality ED data better suited for structure solution of complex zeolites than good quality XRPD
- Flexibility of simulated annealing in TOPAS is ideal for structure completion with powder diffraction data

Stacking faults SSZ-61

Modeling disorder SSZ-61

