ECM 29, Rovinj, HR 26-08-2015

INDEXING OF MULTI-CRYSTAL SNAPSHOTS COLLECTED WITH A BROAD BANDPASS BEAM

Stef Smeets Laboratory for Crystallography ETH Zurich, Switzerland

Sample

Model

SwissFEL (2017)

Free electron laser

- Ultrashort, coherent X-ray pulses
- High brilliance
- Broad bandpass beam mode (4%; SwissFEL only)

<u>Develop methodology to use this mode for structure solution</u>

- Serial snapshot crystallography
- Organic/Inorganic materials
- 'small unit cell' (<25000 Å³)
- Multiple crystals

C. Dejoie: Serial snapshot crystallography for materials science with SwissFEL (MS-13)

Single crystal (monochromatic radiation)

Single crystal (monochromatic radiation)

Single crystal (4% bandwidth)

Single crystal (4% bandwidth)

4% bandwidth

How to index the data?

Four challenges

- 4% bandwidth
 - energy indeterminate
- Single snapshot
- Multiple crystals
- Small unit cells
 - limited number of reflections

- Laue-based approach
 - X-MAS (N. Tamura, C. Dejoie)
- Monochromatic approach
 - DIRAX (Duisenberg, 1992)
 - DENZO (Steller, 1997)
 - *XDS* (Kabsch, 1993)
 - Cctbx.xfel
 - CrystFEL

Develop new indexing approach Unit cell known Start with **q**-vectors Assume average wavelength (±2%)

Approach to indexing

Typical run (ZSM-5)

• 58 peaks in frame, take 10 peaks with lowest 2θ angle

Typical run (ZSM-5)

- 58 peaks in frame, take 10 peaks with lowest 2θ angle
- 45048 potential reflection pairs
 - Reject pairs with wrong angles
- 1943 valid orientation matrices
 - Perform least-squares optimization of rotation matrix
 - Assign wavelengths

Assume monochromatic radiation ($\lambda_{avg} = \frac{1}{2} [\lambda_{min} + \lambda_{max}]$) Find orientation matrix

Reflection wavelength indeterminate

Allow reflection to *slide* along *q*-vector

Minimize distance to integer index Retrieve wavelength

Typical run (ZSM-5)

- 58 peaks in frame, take 10 refs with lowest 2θ angle
- 45048 potential reflection pairs
 - Reject pairs with wrong angles
- 1943 valid orientation matrices
 - Perform least-squares optimization of rotation matrix
 - Assign wavelengths
- 44 solutions with n_{fit} > 25
 - merge symmetry equivalent / duplicates
- 2 unique solutions
 - Remove sys. absences
- Pick best solution!

	n _{fit}	score
solution 1	55	0.1517
solution 2	52	0.2671

Unit cell known Start with **q**-vectors Assume average wavelength (±2%)

Approach to indexing

Test samples

	Space group	а	b	С	в
ZSM-5	Pnma	20.0022	19.8990	13.3830	
Sanidine	C2/m	8.5832	13.0076	7.1943	116.023
Cs ₂ [Pt(CN) ₄].H ₂ O	P6 ₅	9.7910		19.5100	

ZSM-5

Tests with 1 crystal in the beam

Tests with multiple crystals in the beam (ZSM-5)

Multi-crystal indexing (ZSM-5)

1/15 crystals \rightarrow 57/595 reflections

	No. crystals	Avg. No.	Completeness
1 crystal	351	1	0.8%
3 crystals	902	2.8	1.5%
15 crystals	2854	8.5	6.0%

Structure solution (Charge flipping)

ZSM-5

Sanidine

Conclusions

- Single snapshots can be indexed reliably
 - Useful data can be extracted from nearly every frame
- Up to 11 crystals can be indexed in a single frame
 - Multiple crystals in the beam is an advantage!
- Algorithms work with any data <5% bandwidth
- Challenges

Applications

- Ab initio indexing
- Scaling
- Merging

- Structure determination of complex/beam sensitive materials (SwissFEL)
- In-situ/time-resolved experiments