NVK, Oss, NL 12-10-2017

Serial electron diffraction for structure determination and phase analysis of polycrystalline materials

Stef Smeets

Stockholm University

zeolite SSZ-45

Electrons as a radiation source

- Accelerating voltage: 100 to 300 keV
- Wavelength: 0.0251 Å @ 200 keV
- Probe electrostatic potential
- High vacuum (<10⁻³ mbar)
- Strong interaction (10⁶ stronger than X-rays)
- Require small samples (< 1 µm)

McCusker & Baerlocher, Chem. Commun., 2009, 1439–1451

Electron 'diffractometer'

Diffraction

Imaging

Spectroscopy

SAED with different sample thickness

Dynamical effect

- Result of strong interaction with atoms
- Stronger with thicker or aligned crystals
- Forbidden reflections!

Average number of scattering events

$$v = \frac{\pi r^2 Nt}{\int}$$
 thickness
Collision cross section Density (N_{scatterers}m⁻³)

$$P(n) = e^{-v}v^n/n!$$

<i>t</i> (nm)	<i>n</i> =0 (%)	<i>n</i> =1 (%)	<i>n</i> =2 (%)	<i>n</i> =3 (%)	<i>n</i> ≥4 (%)
10	95.1	4.7	0.1	0.0	0.0
50	77.9	19.4	2.4	0.2	0.0
100	60.6	30.3	7.6	1.3	0.2
200	36.8	36.8	18.4	6.1	1.9
500	8.2	20.5	25.6	21.4	20.7

silicon, πr^2 :10⁻²² m², N: 5·10⁻²⁸

Precession electron diffraction (PED)

Vincent & Midgley, Ultramicroscopy 53 (1994) 271-282 Midgley & Eggeman, IUCrJ (2015), 2, 126-136 Zhang et al. Ultramicroscopy 111 (2010) 47–55

Precession electron diffraction (PED)

Vincent & Midgley, Ultramicroscopy 53 (1994) 271-282 Midgley & Eggeman, IUCrJ (2015), 2, 126-136

10

Structure determination from electron diffraction

v-AlFeCr: *P*6₃/*m*, *a* = 40.7 Å, *c* = 12.6 Å

Zou et al., Acta Cryst. (2003), A59, 526-539

Single crystal electron diffraction

- Automated diffraction tomorgraphy (ADT)
 - Kolb et al., Ultramicroscopy (2007), 107:507
 - Kolb et al., Ultramicroscopy (2008), 108:763
- Rotation electron diffraction (RED)
 - Zhang et al., Z. Krist. (2010), 225:94
 - Wan et al., J. Appl. Cryst. (2013), 46:1863
- MicroED (macro-molecules)
 - Shi et al., eLife (2013), 2:e01345
- Electron diffraction tomography (EDT / PEDT)

- > 200 structures solved
 - Yun et al., IUCrJ (2015), 2, 267

Single crystal electron diffraction

Limitations

- Dynamical scattering
- Beam damage
- Missing wedge
- Goniometer mechanics
- Filling the gaps:
 - Beam tilt (RED)
 - Precession (ADT)
 - Continuous rotation*
- Processing: standard crystallographic software

~30-60 minutes

Continuous rotation

- microED
 - Nannenga et al., Nat. Methods (2014), 11:927
- Fast EDT
 - Gemmi et al., J. Appl. Cryst. (2015), 48:718
- Continuous RED (cRED)
 - Wang et al., Chem. Commun., (2017), 53:7018
- Advantages
 - Beam sensitive materials
 - Improved sampling
 - Integration of intensities

Tilt range: ±70° Oscillation angle: 0.1-0.5° 1-5 minutes

Wang et al., Chem. Commun., 2017, 53:7018-7021

<u>cRED</u> Continuous rotation Timepix detector Improved data reduction (XDS) Cooling holder

ASI Timepix Camera

RED Discrete rotation steps Orius CCD Processed with REDp Ambient temperature

Bismuth subgallate

Determine charge states

Yonekura et al., PNAS (2015), 112(11):3368-3373

Catalase

16

Find light elements

Example: Zeolite IM-18

Tilt range (°)	119.46 (-66.83 to 52.63)
Tilt step (°)	0.2°
Exposure time/frame (s)	1
Total data collection time (min)	80
No. of frames	649
Crystal size (length x width) (µm)	0.66 x 0.74
Resolution (Å)	1.05
Completeness (%)	89.9
Detected reflections by RED	1265

M. O. Cichocka, Stockholm University (in manuscript)

Zeolite IM-18: SAED

M. O. Cichocka, Stockholm University (in manuscript)

Zeolite IM-18: HRTEM

M. O. Cichocka, Stockholm University (in manuscript)

Serial electron crystallography

- Motivation:
 - ED diffraction is not representative for bulk material
 - Do phase analysis of multi-phase materials
 - Structure determination of beam-sensitive materials

Serial electron crystallography

Randomly oriented crystals 1 crystal = 1 diffraction pattern Combine data from many crystals

Serial electron crystallography

Why use a TEM?

- Electron beam is very intense
- Crystals can be located from images
- TEMs can be programmed
- There is one in many labs

Advantages

- Beam damage is avoided
- Simple alignment, no rotation
- Fully automatic data collection
- Obtain bulk information

Data collection software

76 Instamatic stream × _ 11.33 interval (ms): 88.22 Increase size fps: Input/Output Brightness 1.0 DisplayRange 11800 * exposure (s) 0.05 Directory: C:\instamatic\work_2017-10-29 Browse.. + Sample name: experiment Flatfield: C:\instamatic\flatfield.tiff Browse.. Open work directory Delete last experiment because it was awful =(cRED serialED RED ctrl debug Serial electron diffraction Scan area (um) 100 0.5 Exp. time image: Brightness: 40000 0.1 Exp. time diff: Spot size: 4 Show calib beamshift Show calib directbeam1 Show calib directbeam2 Start Collection Save image

Data collection (Zeolite Y)

images\image_0000.h5

data\image_0000_0000.h5

Data collection (zeolite A)

200 x 200 μm 484 images 35 minutes

Locate crystals

Diffraction

Collect data

Total: 1107 patterns

Data processing

Data Merging

Challenges

- Scaling
- Dynamical effects
- Reflection partiality

SerialMerge – rank-based merging

- Avoid scaling
- Avoid modelling intensities
- Robust with low quality data

S. Smeets & W. Wan, *J. Appl. Cryst.* (2017). **50**, 885-892 www.github.com/stefsmeets/serialmerge

Structure determination

Olex2 File Edit View Structure Mode Tools Model Select Help shelx SiO₂ S a = 24.61 a = 90° b = 24.61 β = 90° c = 24.61 V = 90° ShelX Solution Program O Solution Method Reflection File Chemical Composition O Z and Z' O Space Group Suggest SG Solution Settings Extra Toolbox Work 1 Labels Labels OFF/ON O Si O º 🛛 🖓 🖌 🖓 Split atoms you click next with Select group or atom(s) and then Electron Density Map 1 Peak & Uiso Sliders Growing Finishing History Select Naming TREF tries: Sorting CFOM NQual Try# Sem 00 637735 0.19 0 0009 0 0 . 001740419 0.197 0 0.234 0 253587 0003 0.268 0 465507 00004074641 0.274 0 367727 00268435455 0.276 0 00268435455 There are 46 more tries

Ø X Fm3 c / 🎽 🛅 💢 Z = 192 Z' = 1 R1: Solution V = 14905.098181 155.4 Me n/a Viev (Dra alpha=0.19, Ngual=0.0, CFOM=0.19 Auto 🗍 ShelXS Direct Methods shely hid Si1 02 Atomic Vol. = 25.9 Å³ Z = 192 Z' = 1 Fm-3c Add H No Restraint EADF ISOR SMU Solit Split or Move with SHIFT key

Zeolite A $Fm\overline{3}c$ a = 24.61 Å $Si_{96}Al_{96}O_{384}$ Z = 192

200 frames

 Reflections

 Total:
 19804

 Unique:
 227

 d_{\min} :
 1.03 Å

 Compl.:
 100%

>>|

Structures solved

Zeolite A $Fm\overline{3}c$ a = 24.61 Å $\mathrm{Si}_{96}\mathrm{Al}_{96}\mathrm{O}_{384}$ *Z* = 192

Zeolite Y

Si₁₉₂O₃₈₄

Z = 192

a = 24.74 Å

 $Fd\overline{3}m$

<u>Mordenite</u> Cmcm a = 18.11 Åb = 20.53 Åc = 7.53 Å $\mathrm{Si}_{40}\mathrm{Al}_{8}\mathrm{O}_{96}$ *Z* = 16

Paulingite $Im\overline{3}m$ a = 35.08 ÅSi₆₇₂O₁₃₄₄ *Z* = 96 Dual-space methods FOCUS

34

Phase analysis

Serial ED data collection on Co-CAU-36

data\image_0342_0002.h5

200 x 200 μm 30 minutes

309 images 1202 patterns

With Bin Wang & Ken Inge (Stockholm University)

Serial ED data collection on Co-CAU-36

data\image 0280 0012.h5

data\image_0468_0003.h5

data\image_0450_0002.h5

data\image_0469_0001.h5

images\image_0040.h5

500 diffraction patterns6 impurity crystals

Collect cRED data

XDS

Wurtzite structure (CoO)

'Quantitative' phase analysis

CoO: ~1%

Co-CAU-36: ~99%

Study on Cr carbides

3

	Space group	a / Å	b / Å	c / Å	
Phase 1	$Fm\overline{3}m$	10.62	=0	=a	
Phase 2	$P6_3mc$	13.77	=a	4.88	
Phase 3	Рпта	4.39	7.08	14.16	

Samples from C. Olsson, Sandviken (SE)

XRPD quantitative phase analysis (Cr carbides)

	Space group	a / Å	b / Å	c / Å	composition
Phase 1	$Fm\overline{3}m$	10.62	=a	= <i>a</i>	84.49 %
Phase 2	$P6_3mc$	13.77	=a	4.88	3.09 %
Phase 3	Рпта	4.39	7.08	14.16	12.42 %

Samples from C. Olsson, Sandviken (SE)

SerialED data collection on Cr carbides

Quantitative phase analysis

Single crystal

Conclusions

• Electrons are well suited for structure analysis of nanocrystalline materials

<u>SerialED</u>

- Data can be collected routinely & automatically
- 100-200 patterns are enough for structure determination
- Applications
 - Structure determination (of beam-sensitive materials)
 - Crystal identification (screening, polymorphism)
 - Phase analysis