Edinburgh, UK 03-07-2018

Structure determination of polycrystalline materials using X-rays and electrons

Stef Smeets Stockholm University stef.smeets@mmk.su.se

Electrons as a radiation source

- Accelerating voltage: 100 to 300 keV
- Wavelength: 0.0251 Å @ 200 keV
- Probe electrostatic potential
- Strong interaction (10⁶ stronger than X-rays)
- Require small samples (< 1 μm)
- High vacuum (<10⁻³ mbar)

Electron 'diffractometer'

Single crystal electron diffraction

Limitations

- Dynamical (multiple) scattering
- Beam damage
- Missing wedge
- Goniometer mechanics
- Filling the gaps:
 - Beam tilt (RED)
 - Precession (ADT, pEDT)
 - Continuous rotation (fast EDT, microED, IEDT, CRED)

• More than 200 structures solved (Yun et al., IUCrJ (2015), 2:267)

Fine slicing using beam tilt (RED)

Zhang *et al.*, Z. Krist. (2010), 225:94 Wan *et al.*, J. Appl. Cryst. (2013), 46:1863

Fine slicing using beam tilt (RED)

Zhang *et al.*, Z. Krist. (2010), 225:94 Wan *et al.*, J. Appl. Cryst. (2013), 46:1863

Continuous rotation method (CRED)

Nederlof *et al.*, Acta Cryst. D (2013), 69:1223 Nannenga *et al.*, Nat. Methods (2014), 11:927 Gemmi *et al.*, J. Appl. Cryst. (2015), 48:718 Wang *et al.*, Chem. Commun., (2017), 53:7018

Example: Mordenite

Zeolite Porous aluminosilicate

 $\mathrm{Si}_{48}\mathrm{O}_{96}$

Orthorhombic *Cmcm a* = 18.11 Å *b* = 20.53 Å *c* = 7.528 Å

Mordenite

Rotate: -43.90° to 58.65° @ 0.45°/s (102.55°) Exposure: 0.5 s, oscillation angle: 0.23°

Data collected with M.O. Cichocka (Stockholm University)

100

 $\sqrt{(I_{calc})}$

150

080 8

50

332 061 o

404 006

440 **•**

50

0

Data reduction	XDS
Compl. (<i>Cmcm</i>)	93.6 %
I/σ	6.25
Resolution	0.80 Å
R _{meas}	0.108
R _{obs}	0.088
R _{exp}	0.087
Refinement	ShelXL
Reflections (unique)	1585
Reflections $(F_0 > 4\sigma(F_0))$	1140
$R1 (F_o > 4\sigma(F_o))$	0.158
$R1 (F_o > 4\sigma(F_o))$ R1 (all)	0.158 0.175
$R1 (F_o > 4\sigma(F_o))$ R1 (all) Parameters	0.158 0.175 96
$R1 (F_o > 4\sigma(F_o))$ R1 (all) Parameters Restraints	0.158 0.175 96 0

Structure refinement

Refinement by M.O. Cichocka (Stockholm University)

Structure determination using X-rays and electrons

SSZ-45; S. Smeets et al., Chem. Mater., 2014

SSZ-61; S. Smeets *et al., Angew. Chem.,* 2014

SSZ-87; S. Smeets *et al., J. Am. Chem. Soc.*, 2015

CIT-13; J.H. Kang *et al.*, *Chem. Mater.*, 2017

SCM-14; Y. Luo et al., Chem.-Eur. J., 2017

Outline

- Zeolite IM-18
 - RED + HRTEM + XRPD
- Zeolite SSZ-70
 - HRTEM + XRPD + NMR
- Serial electron diffraction
 - Structure determination
 - Phase analysis
 - Screening

Zeolite IM-18

M.O. Cichocka, Y. Lorgouilloux, S. Smeets, J. Su, W. Wan, P. Caullet, N. Bats, L.B. McCusker, J.-L. Paillaud, and X. Zou. *Cryst. Growth Des.*, 18(4):2441-2451, 2018

Germanosilicate IM-18

Y. Lorgouilloux, et al. French patent 2,923,477 (2007)

4-Dimethylaminopyridine (DMAP)

M. O. Cichocka et al., Cryst. Growth Des., 18(4):2441-2451, 2018

Rotation electron diffraction

Tilt range (°)	119.46 (-66.83 to 52.63)
Tilt step (°)	0.2°
Exposure time/frame (s)	1.0
No. of frames	649
Crystal size (μm)	0.66 x 0.74
Resolution (Å)	1.05
Completeness (%)	89.9
Reflections	1265

Index Bragg spots

Orthorhombic <i>l</i>	'mma / Im2a
a = 531 Å	$\alpha = 89.79^{\circ}$

u – 3.31 A	u = 09.79
<i>b</i> = 15.07 Å	<i>b</i> = 88.81°
<i>c</i> = 17.06 Å	γ = 90.35°

hkl: h + k + l = 2nhk0: h = 2n, k = 2n

M. O. Cichocka et al., Cryst. Growth Des., 18(4):2441-2451, 2018

Average framework structure from SHELXS

Average framework structure from SHELXS

Monoclinic *P*2₁/*m a* = 10.336 Å, *b* = 14.984 Å, *c* = 17.734 Å, *β* = 106.94°

19

Selected area electron diffraction

M. O. Cichocka et al., Cryst. Growth Des., 18(4):2441-2451, 2018

20

HRTEM

M. O. Cichocka et al., Cryst. Growth Des., 18(4):2441-2451, 2018

HRTEM

M. O. Cichocka et al., Cryst. Growth Des., 18(4):2441-2451, 2018

M. O. Cichocka et al., Cryst. Growth Des., 18(4):2441-2451, 2018

27

Summary IM-18

- Structure of IM-18 determined by combining methods
 - RED \rightarrow Average structure
 - $\text{ SAED } \rightarrow \text{Disorder}$
 - HRTEM \rightarrow Short-range order
 - XRPD \rightarrow Structure completion
 - \rightarrow Model validation
- New zeolite framework topology
- Experimental evidence for 2D stacking disorder

Zeolite SSZ-70

S. Smeets, Z.J. Berkson, D. Xie, S.I. Zones, W. Wan, X. Zou, M.-F. Hsieh, B.F. Chmelka, L.B. McCusker, and C. Baerlocher. *J. Am. Chem. Soc.*, 139(46):16803-16812, 2017

Zeolite SSZ-70

Stacey Zones and Alan Burton, US Patent 7,108,843 B2 (2006) Molecular sieve SSZ-70 composition of matter and synthesis thereof

Runnebaum et al., 2014, ACS Catal., 4, 2364

30

Electron diffraction (as-made)

Along [001]

Along [100]

HRTEM (as-made)

Stacking disorder along [001]

MWW-layers

Stacking faults

Collected by Wei Wan, Stockholm University, SE

Solid-state ²⁹Si MAS NMR

Hsieh, Aronson and Chmelka (2014)

Archer et al., **2010**, *Micropor*. *Mesopor*. *Mat.*, 130, 255 Camblor et al., **1998**, *J. Phys. Chem. B*, 102, 44

35

Solid-state ²⁹Si MAS NMR

Hsieh, Aronson and Chmelka (2014)

Archer *et al.*, **2010**, *Micropor. Mesopor. Mat.*, 130, 255 Camblor *et al.*, **1998**, *J. Phys. Chem. B*, 102, 44

36

Disorder model

Random arrangement of **MWW** layers

 $P(A \rightarrow A) = 0\%$ $P(A \rightarrow B) = 50\%$ $P(A \rightarrow C) = 50\%$

Simulations using DiFFaX

DiFFaX: Traecy et al., 1991, Proc. R. Soc. Lond. A, 433, 499

39

Interlayer region

Zach Berkson and Brad Chmelka, UC Santa Barbara, USA

ppm

Zach Berkson and Brad Chmelka, UC Santa Barbara, USA

Interlayer region

Model 2

50%

Structure of calcined SSZ-70

Summary SSZ-70

- Structure of SSZ-70 determined by combining methods
 - − HRTEM \rightarrow Short-range order
 - XRPD \rightarrow Long-range order
 - − 2D NMR \rightarrow Nanostructure
- New stacking arrangement of **MWW**-layers
- Mixed silanol sites at the nanoscale can help explain enhanced catalytic behaviour of SSZ-70

Serial electron diffraction

Serial electron diffraction

Randomly oriented crystals 1 crystal = 1 diffraction pattern Combine data from many crystals

Collect data ~3000 crystals/hour

GUI for data collection

ps: 13.57 interval (ms): 73.68 🗌 Increase size 🖂 A	o contrast						
exposure (s) 0.05 🜩 Brightness 1.0 🜩 DisplayRange 11800	Directory:	C:\insta	amatic\wor	rk_2018-0	6-13		Browse.
	Sample name:	experim	nent				1
	Flatfield:	C:\insta	amatic\flatf	field.tiff			Browse.
	Open wor	k directo	ory	Open se	ettings directory	Delete last	experiment
	CRED autoCRED) serialE otation e ne: [D RED ctr electron dif	rl learnir fraction	ng expert about	🗌 Beam ur	nblanker
	Image interv	ral:	10	÷		Enable in	mage interv
	Diff derocus	;	0.01			Relay	heam
	Select outpu	it format	ts:		☑ .tiff ☑ DIALS (.smv)	☑ XDS (.sr ☑ REDp (.	mv) mrc)
	Start Collection		s	Stop Collection			
Save image							

Data collection (Zeolite Y)

images\image_0000.h5

data\image_0000_0000.h5

Data collection (zeolite A)

Diffraction

Collect data

2 µm

Total: 1107 patterns

Serial electron diffraction

- Structure determination?
 - Phase analysis?
 - Screening?

Structure determination: orientation finding

- Forward projection model using known lattice parameters
- Generate pattern library of all possible orientations (~1.5M in P1)
- Match best orientation and index data

Source code: www.github.com/stefsmeets/problematic

Based on: Rius et al., IUCrJ (2015), 2:452

Structure determination: Data Merging

Challenges

- Scaling
- Dynamical effects
- Reflection partiality

SerialMerge – rank-based merging

- Avoid scaling
- Avoid modelling intensities
- Robust with low quality data

S. Smeets & W. Wan, *J. Appl. Cryst.* (2017). **50**, 885-892 www.github.com/stefsmeets/serialmerge

Structure determination

Zeolite A $Fm\overline{3}c$ a = 24.61 Å $Si_{96}Al_{96}O_{384}$ *Z* = 192

200 frames

OK SIMU Reflections Total: 19804 Unique: 227 d_{min}: 1.03 Å Compl.: 100%

Structures solved

56

Serial electron diffraction

- Structure determination?
- ➡ Phase analysis?
 - Screening?

Phase analysis: Co-CAU-36

images\image_0342.h5

data\image_0342_0002.h5

Scan 200 x 200 µm in 30 minutes 1202 diffraction patterns

Sample from Bin Wang & Ken Inge (Stockholm University)

Phase analysis: Co-CAU-36

data\image_0280_0012.h5

data\image_0468_0003.h5

data\image_0450_0002.h5

data\image_0469_0001.h5

1202 diffraction patterns500 contained reflections -> 6 impurity crystals

59

Phase analysis: Co-CAU-36

34.45 to -13.79°Oscillation angle: 0.23°1.5 min data collection

XDS

60

'Quantitative' phase analysis

Co-CAU-36: ~99% 494 patterns CoO (wurtzite): ~1% 6 patterns

Serial electron diffraction

- Structure determination?
- Phase analysis?
- ➡ Screening?

Screening: Mordenite

images\image_0074.h5

Scan 200 x 200 μm in 24 minutes 836 diffraction patterns (2090 / hour)

Screening: Crystal selection

Crystal selection

- 1. Find isolated crystals
 - Must be 0.5 µm away from edge
 - No crystals in 1.5 μ m radius
- 2. Select most suitable crystals
 - Machine learning (CNN)

Screening: Machine learning

• A deep convoluted neural network trained on ~78.000 diffraction patterns predicts which crystals are suitable for collecting CRED data

Prediction: 1.0

Prediction: 1.0

Prediction: 0.26

Prediction: 0.25

Jonas Ångström (Stockholm University)

65

Screening: 6 of the 'best' crystals (53)

frame: 230, crystal: 1, size: 0.060 µm²

frame: 104, crystal: 1, size: 0.163 μm^2

frame: 252, crystal: 1, size: 0.350 μm^2

frame: 188, crystal: 2, size: 0.351 μm^2

frame: 419, crystal: 1, size: 0.441 μm^2

Screening: 6 of the 'worst' crystals (53)

frame: 400, crystal: 2, size: 0.069 µm²

frame: 430, crystal: 1, size: 0.121 μm^2

Prediction: 0.0

frame: 392, crystal: 2, size: 0.250 µm²

frame: 449, crystal: 3, size: 0.040 μm^2

Automated data collection

Rotation: -44.0 to 47.4° @ 0.76°/s (91.4°) Exposure: 0.5 s, oscillation angle: 0.39°

Data collected by Bin Wang (Stockholm University)

Conclusions

- Electrons are very well suited for structure determination
 - Reliable crystal structures can be obtained
- PXRD data are valuable for
 - Structure validation against bulk material
 - Structure completion (*e.g.* cations/templates/adsorbants in zeolites)
- Combination of methods is essential to find all the details
- SerialED data can be collected routinely & automatically
 - Structure determination
 - Phase analysis
 - Screening
- Future: Combined SerialED and CRED for automated crystal picking and data collection