Oviedo, ES 26-08-2018

Zeolite SSZ-70: new understanding of a successful catalytic material

Stef Smeets

Stockholm University

stef.smeets@mmk.su.se

Structure

3

Electrons as a radiation source

- Accelerating voltage: 100 to 300 keV
- Wavelength: 0.0251 Å @ 200 keV
- Probe electrostatic potential
- Strong interaction (10⁶ stronger than X-rays)
- Require small samples (< 1 μm)
- High vacuum (<10⁻³ mbar)

Electron 'diffractometer'

RED: Fine slicing using beam tilt

Zhang *et al.*, Z. Krist. (2010), 225:94 Wan *et al.*, J. Appl. Cryst. (2013), 46:1863

Tilt range ±50° (0.2° /step) 0.2 s exposure

Zeolite SSZ-87 Framework structure solved using FOCUS

Smeets et al., J. Am. Chem. Soc. (2015), 137:2015

6

Framework structure from RED

Complete the structure with XRPD

Complete the structure with XRPD

9

Complete the structure with XRPD

Smeets et al., J. Am. Chem. Soc. (2015), 137:2015 10

Locate heteroatoms from XRPD

Structure determination using X-rays and electrons

SSZ-45; S. Smeets et al., Chem. Mater., 2014

SSZ-61; S. Smeets *et al.*, *Angew. Chem.*, 2014

SSZ-87; S. Smeets *et al.*, *J. Am. Chem. Soc.*, 2015

CIT-13; J.H. Kang *et al., Chem. Mater.,* 2017

SCM-14; Y. Luo et al., Chem.-Eur. J., 2017

IM-18; M.O. Cichocka et al., Cryst. Growth Des., 2018 MS14-P01

Zeolite SSZ-70

Stacey Zones and Alan Burton, US Patent 7,108,843 B2 (2006) Molecular sieve SSZ-70 composition of matter and synthesis thereof

Runnebaum et al., 2014, ACS Catal., 4, 2364

Rotation Electron diffraction (as-made)

15

HRTEM (as-made)

Stacking disorder along [001] 00000 15.3 LUCIOCO. B B R.H.M. A B B Cost Cost 2424 V 2424 P

MWW-layers

Stacking faults

Collected by Wei Wan, Stockholm University, SE

SSZ-70

Solid-state ²⁹Si MAS NMR

Archer *et al.*, **2010**, *Micropor. Mesopor. Mat.*, 130, 255 Camblor *et al.*, **1998**, *J. Phys. Chem. B*, 102, 44

Hsieh, Aronson and Chmelka (2014)

Solid-state ²⁹Si MAS NMR

Hsieh, Aronson and Chmelka (2014)

Archer *et al.*, **2010**, *Micropor. Mesopor. Mat.*, 130, 255 Camblor *et al.*, **1998**, *J. Phys. Chem. B*, 102, 44

20

Disorder model

 $x+\frac{2}{3}, y+\frac{1}{3}$

x+¹/₃, *y*+²/₃

MWW-layers

Disorder model

 $X+\frac{2}{3}, Y+\frac{1}{3}$ $P(A \rightarrow B) = 50\%$

 $x+\frac{1}{3}, y+\frac{2}{3}$ P(A \rightarrow C) = 50%

 $P(A \rightarrow A) = 0\%$ $P(A \rightarrow B) = 50\%$ $P(A \rightarrow C) = 50\%$

Simulations using DiFFaX

DiFFaX: Traecy et al., 1991, Proc. R. Soc. Lond. A, 433, 499

Xu et al., 2015, Chem. Mater., 27, 23, 7852-7860

A different approach (ECNU-5)

Polymorph B: *P*6₃/*mmc*

Xu et al., 2015, Chem. Mater., 27, 23, 7852-7860

Interlayer region

the second secon

2D DNP-enhanced J-mediated ²⁹Si{²⁹Si} NMR

Interlayer region

50%

Structure of calcined SSZ-70

New understanding of a successful catalytic material

SSZ-70 (as-synthesized)

Weaker linkages in SSZ-70

- Easier to delaminate using mild conditions
- Intrinsic structure remains intact
- High degree of surface area

Ouyang, et al. Dalton Trans. 2014, 43, 10417 Aigner, et al., React. Chem. Eng. 2017, 2, 852 Aigner, et al., React. Chem. Eng., 2017, 2, 842

Conclusions

- Structure of SSZ-70 determined by combining methods
 - HRTEM \rightarrow Short-range order
 - XRPD \rightarrow Long-range order
 - − 2D NMR \rightarrow Nanostructure
- New stacking arrangement of **MWW**-layers
- Weaker linkages can help explain enhanced catalytic behaviour of SSZ-70 and derived materials
- Smeets et al., J. Am. Chem. Soc. (2017), 139:16803

