

Nanofront 2019, Courchevel, FR 22-03-2019

Structure determination of nanocrystalline materials using electron diffraction

Stef Smeets Kavli Institute of Nanoscience Delft

Fourier Transform

duck

myoglobin

zeolite

Diffraction

- Reflections
 - Positions \rightarrow Unit cell
 - Intensities \rightarrow Crystal structure
 - Shape \rightarrow Microstructure (stress, strain)

Crystallography

Crystallography

"The Phase problem" Structure determination Molecular replacement

- Direct methods
- Charge flipping

...

Electrons as a radiation source

- Accelerating voltage: 100 to 300 keV
- Wavelength: 0.0251 Å @ 200 keV
- Probe electrostatic potential
- Strong interaction (10⁶ stronger than X-rays)
- Require small samples (< 1 μm)
- High vacuum (<10⁻³ mbar)

Electron 'diffractometer'

3D Electron diffraction

Continuous rotation method Nederlof *et al.*, Acta Cryst. D (2013), 69:1223

Zeolite mordenite

Rotate: -43.90° to 58.65° @ 0.45°/s (102.55°) Exposure: 0.5 s, oscillation angle: 0.23°

Cichocka et al., J. Appl. Crystallogr. 51 (2018): 1652–61

					•	•										
				*		-										
						-										
		•		-				• 1	•	•						
		>	•	•	e	*	1	•*	٠	•						
		•	÷.	•	•	•	-		•	34						
		4	e .	1		•		-		-						
		ŧ.	*	6		•		-								
	•	,		•												
								Ĭ								
												•				
	•	2		5					•	•	•	•	4			
*	٢	\$	•			•	-	•	•	•	•	•				
	:	•	8	•		۵	•.		٠	•	٠	•	4			
	•		•	6	•				•	•			•			
		•	•		•				•							
	٩	•	•								i i		÷			
													j			
									•	•	•	•	٠			
	۲	•	•			•			•	•	\$	•				
		•	•	•	•	•		è	۲	•	3	¢	*			
		•	٠	•	•	٠	٠	۲	•		٨	•				
		4	4	•	•	•	-			- 5						
		•	•	•	•											
									Ĩ.							
									•	÷	•	• •				
					•	•		۴	*	2						
							•		•	ż						
								,	÷							

Framework structure

Refinement

Chemical formula (refined)	Si ₄₈ O ₉₆					
Space group	Cmcm (63)					
a (Å)	18.110					
<i>b</i> (Å)	20.530					
c (Å)	7.528					
Resolution (Å)	0.80					
No. of total reflections	5244					
No. of unique reflections (all)	1585					
No. of unique reflections $[F_o > 4\sigma(F_o)]$	1140					
Refined parameters	96					
Restraints	0					
$R_{\rm int}$	0.0878					
R1 for $F_{\rm o} > 4\sigma(F_{\rm o})$	0.1602					
R1 for all data	0.1769					
Goodness of fit	1.610					

Improved data collection

Discrete rotation steps CCD camera Ambient temperature Custom processing scripts

Bismuth subgallate

Wang et al., Chem. Commun., 2017, 53:7018-7021

Continuous rotation Hybrid pixel detectors Sample cooling Data reduction by standard crystallographic software

ASI Timepix Camera

Determine charge states

25

Find light elements

Paracetamol II

cobalt aluminophosphate

Dynamical refinement with JANA Palatinus *et al., Science* (2017), 355(6321):166-169 **Serial electron diffraction**

The electron microscope as a giant toy

Serial electron diffraction

Screen up to 4000 crystals per hour 1 crystal = 1 diffraction pattern Obtain data from 1000s of crystals

Smeets et al., J. Appl. Cryst., 2018, 51:1262

30

Data collection (zeolite Y)

images\image_0000.h5

31

Serial electron diffraction

- Structure determination?
 - Phase analysis?
 - Screening?

Data collection (zeolite A)

Orientation finding

- Forward projection model using known lattice parameters
- Generate pattern library of all possible orientations (~1.5M in P1)
- Match best orientation and index data

Smeets et al., J. Appl. Cryst., 2018, 51:1262

al: 0.98, be: 0.80, ga: 2.90

Structure determination

Zeolite A (using 200 / 1107 frames)

Zeolite Y (using 99 / 2506 frames)

Serial electron diffraction

- Structure determination?
- Phase analysis?
 - Screening?

Carbide quantitative phase analysis

With Claes Olsson (Sandvik Materials Technology) Smeets et al., Steel Res. Int. 90 (2019), 1800300

Automated ED data collection on Cr carbides

data\image_0449_0006.h5

Quantitative phase analysis

With Claes Olsson (Sandvik Materials Technology) Smeets et al., *Steel Res. Int.* 90 (2019), 1800300

Serial electron diffraction

- Structure determination?
- Phase analysis?

Screening: Mordenite

images\image_0074.h5

data\image_0074_0000.h5

Scan 200 x 200 µm in 24 minutes 836 diffraction patterns (2090 / hour)

Screening: Crystal selection

} 0.5 μm

Crystal selection

- 1. Find isolated crystals
 - Must be 0.5 µm away from edge
 - No crystals in 1.5 μm radius
- 2. Select most suitable crystals
 - Machine learning (CNN)

Screening: Machine learning

 A deep convoluted neural network trained on ~78.000 diffraction patterns predicts which crystals are suitable for collecting ED data

Screening: 6 of the 'best' crystals (53)

frame: 230, crystal: 1, size: 0.060 µm²

frame: 104, crystal: 1, size: 0.163 µm²

frame: 252, crystal: 1, size: 0.350 μm^2

frame: 188, crystal: 2, size: 0.351 μ m²

frame: 419, crystal: 1, size: 0.441 μm^2

45

Screening: 6 of the 'worst' crystals (53)

frame: 400, crystal: 2, size: 0.069 µm²

frame: 253, crystal: 1, size: 0.112 µm²

frame: 430, crystal: 1, size: 0.121 μm^2

frame: 392, crystal: 2, size: 0.250 µm²

frame: 449, crystal: 3, size: 0.040 µm²

Serial rotation electron diffraction

➡ Structure determination?

Phase analysis?

Automated data collection

Rotation: -44.0 to 47.4° @ 0.76°/s (91.4°) Exposure: 0.5 s, oscillation angle: 0.39°

Bin Wang (Stockholm University)

a=13.3(5) Å b=19.2(7) Å c=19.8(5) Å $\alpha=90.0(1.7)^{\circ}$ $\beta=89.9(1.2)^{\circ}$ $\gamma=89.16(1.5)^{\circ}$

Orthorhombic *C*-centered

Cluster analysis (intensities)

Data processing pipeline (phase mixture)

Cluster analysis (unit cells)

What's next?

- Electrons are very well suited for structure analysis
 - Reliable structures can be obtained routinely
- Small, but growing community
- Data collection (and processing!) protocols are under active development
 - Automation is key
- Equally useful for structural biology / materials science applications