DutchBioPhysics (Veldhoven) 2019-10-08

1

Towards automated serial electron diffraction for macromolecular crystallography

Stef Smeets Kavli Institute of Nanoscience Delft

Fourier Transform

			E							
			Į.		T.					

7

duck

$$1/b$$

 $1/a$

myoglobin

			1/h
			· -/~
		+	
		1/a	

Electrons as a radiation source

- Accelerating voltage: 100 to 300 keV
- Wavelength: 0.0251 Å @ 200 keV
- Probe electrostatic potential
- Strong interaction (10⁶ stronger than X-rays)
- Require small samples (< 1 μm)
- High vacuum (<10⁻³ mbar)

Electron 'diffractometer'

Cichocka et al., J. Appl. Cryst. (2018), 51:1652 Detector readout time Tilt range: up to 150° Oscillation angle: 0.1-0.5° Detector Rotation speed: 0.5-2.0°/s <5 minutes

3D Electron diffraction

Continuous rotation method

Nederlof *et al., Acta Cryst. D* (2013), 69:1223 Nannenga *et al., Nat. Methods* (2014), 11:927 Gemmi *et al., J. Appl. Cryst.* (2015), 48:718 Cichocka *et al., J. Appl. Cryst.* (2018), 51:1652

Zeolite mordenite

Rotate: -43.90° to 58.65° @ 0.45°/s (102.55°) Exposure: 0.5 s, oscillation angle: 0.23° JEOL 2100-LaB₆ @ 200 kV (Timepix camera)

250 nm

Cichocka et al., J. Appl. Crystallogr. 51 (2018), 1652

Determine charge states

Yonekura et al., PNAS (2015), 112(11):3368

Structure determination of R2lox using ED

Xu et al., Sci. Adv. (2019), 5(8):eaax4621

Solved with molecular replacement Resolution: 3.0 Å Completeness: 62.8 %

No standard for data collection

- No software many labs use ad hoc data collection protocols
- Manual data collection: tedious and not reproducible
- Lack of automation
 - Unnecessary dose accumulation
 - Low redundancy
 - Biased crystal selection

nput/Output	-				_		
Directory:	rectory: C:\instamatic\work_2019-09-20					Browse	
Sample name:	experiment						
Flatfield:					Browse		
Open	work directory	Open	settings directory	Delete last ex	periment		
Target angle Diff defocus Exposure (m Mode:	e (degrees): 400 : 150 s): 400 dif	I I I I I I I I I I I I I I I I I I I I	nvert Doggle bear Reset Doggle defo live view Doggle DIFF live view Doggle scree	mblank ocus en			
Instruction f	ile:			Browse			
	Search		Focus	Get imag	le		
Start seri	al acquisition						

TVIPS (X)F416

SerialED data collection (Zeolite SSZ-45)

diff\image_121.tiff

diff\diff_121.tiff

Python (instamatic)

from instamatic import TEMController
from instamatic.formats import write_tiff
from instamatic.serialem import read_nav_file

```
ctrl = TEMController.initialize()
```

```
markers = read_nav_file("nav.nav", acquire_only=True)
```

```
img, h = ctrl.getImage(exposure=0.2)
write_tiff(f"sed_diff_{i:4d}.tiff", img, header=h)
```

```
ctrl.difffocus.defocus(offset=1500)
```

```
img, h = ctrl.getImage(exposure=0.2)
write_tiff(f"sed_image_{i:4d}.tiff", img, header=h)
```

```
ctrl.difffocus.refocus()
```


28 crystals rotated from -15 to 15°

The crystal tracking problem

Automated crystal tracking via beam shift

JEOL 2100-LaB₆ @ 200 kV (Timepix) Rotation: -44.0 to 47.4° @ 0.76°/s (91.4°) Exposure: 0.5 s, oscillation angle: 0.39°

Wang et al., IUCrJ 6 (2019), 854-867

Serial rotation electron diffraction

Sample	ZSM-5	PCN-416	ZSM-5 + mordenite	PST-20 + ZSM-25
Data collection time	6 h	2 h	2 h	4 h
Rotation (mean) /°	11.9	4.0	16.3	16.1
Rotation (max) /°	76.2	44.4	73.6	78.5
# crystals	250	139	123	148
# data sets > 5°	126	66	89	99
# data sets > 20°	43	15	33	42
# indexed data sets	47	27	42/11	31/19
Resolution /Å	0.77	0.90	0.76/0.81	1.46/1.46

PST-20

Serial rotation electron diffraction

Sample	ZSM-5	PCN-416	ZSM-5 + mordenite	PST-20 + ZSM-25
Data collection time	6 h	2 h	2 h	4 h
Rotation (mean) /°	11.9	4.0	16.3	16.1
Rotation (max) /°	76.2	44.4	73.6	78.5
# crystals	250	139	123	148
# data sets > 5°	126	66	89	99
# data sets > 20°	43	15	33	42
# indexed data sets	47	27	42/11	31/19
Resolution /Å	0.77	0.90	0.76/0.81	1.46/1.46

1.0

0.8

0.4

0.2

0.0

Distance $(1 - CC^2)^{1/2}$ 0.6

> Index Hierarchical cluster analysis selects best matching data for merging

Serial vs. manual ED

Sample	Manual	SerialED
Space group	I 4 2m	I42m
Cell /Å	16.7, 30.1	16.5 <i>,</i> 29.8
# data sets	1	12
Resolution /Å	1.05	0.90
Completeness	100%	97%
# uniq. refls	1918	2825
# obs. refls.	912	1254
<i>R</i> 1	0.258	0.216

a=16.496(3) Å *c*=29.947(5) Å

SerialED on proteins

Using STEM nanodiffraction

Bücker et al., bioRxiv; doi: https://doi.org/10.1101/682575

Summary

- Electron diffraction is very well suited for structure analysis
 - Reliable structures can be obtained routinely
- Small, but growing community
- Data collection (and processing!) protocols are being developed
- Automation for high-throughput data collection
- Equally useful for structural biology / materials science applications

